Programmable Frequency Counters

 PM6685 B PM6685ROperators Manual

482287220101
May 2003 First Edition
All rights reserved. Reproduction in whole or in part is prohibited without written consent of the copyright owner.
© Pendulum Instruments AB - Sweden - 2003

Table of Contents

1 PrefaceIntroduction1-2
Design Innovations 1-2
New Fast SCPI Bus 1-4
Rubidium Counter1-4
2 Safety InstructionsIntroduction2-2
Safety Precautions 2-2
3 Preparation for Use
Unpacking3-2
Installation 3-2
4 Using the ControlsAbout This Chapter.4-2
The User Interface 4-2
Default Settings 4-3
Basic Controls. 4-4
Input A Controls 4-5
Measurement Control Keys 4-6
Display Controls 4-7
Display 4-8
Display 4-9
Rear Panel 4-10
Rear Panel 4-11
PM6685R Front Panel 4-12
5 Input Signal Conditioning
Introduction to this chapter 5-2
Input A 5-2
Input C 5-6
Reducing Noise and Interference 5-6
6 Measuring FunctionsIntroduction to This Chapter6-2
Selecting Function 6-2
Frequency 6-3
Introduction 6-3
Burst Frequency and PRF 6-6
AM Signals 6-10
Ratio. 6-12
Introduction 6-12
Period 6-13
Introduction 6-13
Pulse Width and Duty Factor. 6-14
Introduction 6-14
Pulse Width A 6-15
Duty Factor 6-15
Totalize 6-16
Totalize A Manual. 6-16
7 Measurement Control
About This Chapter. 7-2
Measuring Time 7-2
Display Hold 7-3
Arming 7-3
Digit Blanking 7-5
Controlling Measurement Timing 7-6
Arming Setup Time 7-12
Arming Examples 7-13
Example \#1: 7-13
Example \#2 7-16
Example \#3 7-17
8 Processing
Introduction 8-2
Averaging 8-2
Nulling 8-2
9 Auxiliary Functions
About This Chapter. 9-2
Auxiliary Menu 9-2
10 Performance Check
General Information 10-2
Recommended Test Equipment 10-2
Front Panel Controls 10-3
Short Form Specification Test 10-5
Rear Input/Output 10-6
Measuring Functions 10-7
PM9621, PM9624 10-8
PM9623 10-8
11 Preventive Maintenance
Calibration and Adjustment. 11-2
Other Maintenance 11-4
12 Specifications
Measuring Functions 12-2
Input and Output Specifications 12-3
Auxiliary Functions 12-4
GPIB 12-5
Battery Unit 12-6
Measurement Uncertainties 12-7
Timebase Options 12-8
General Specifications 12-9
Ordering Information. 12-10
13 Appendix
Appendix 1, Error Messages 13-2
14 Index
15 Service Centers
seRvice centers 15-II

LIMITED WARRANTY \& LIMITATION OF LIABILITY

Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service. The warranty period is one (1) year for the instrument and for its accessories. The warranty period begins on the date of shipment. Parts, product repairs and services are warranted for 90 days. This warranty extends only to the original buyer or end-user customer of a Fluke authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in Fluke's opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling. Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non-defective media. Fluke does not warrant that software will be error free or operate without interruption.

Fluke authorized resellers shall extend this warranty on new and unused products to end-user customers only but have no authority to extend a greater or different warranty on behalf of Fluke. Warranty support is available if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable international price. Fluke reserves the right to invoice Buyer for importation costs of repair/replacement parts when product purchased in one country is submitted for repair in another country.
Fluke's warranty obligation is limited, at Fluke's option, to refund of the purchase price, free of charge repair, or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period.

To obtain warranty service, contact your nearest Fluke authorized service center or send the product, with a description of the difficulty, postage and insurance prepaid (FOB Destination), to the nearest Fluke authorized service center. Fluke assumes no risk for damage in transit. Following warranty repair, the product will be returned to Buyer, transportation prepaid (FOB Destination). If Fluke determines that the failure was caused by misuse, alteration, accident or abnormal condition of operation or handling, Fluke will provide an estimate of repair costs and obtain authorization before commencing the work. Following repair, the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges (FOB Shipping Point).
THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

Fluke Corporation, P.O. Box 9090, Everett, WA 98206-9090 USA, or
Fluke Industrial B.V, P.O. Box 90, 7600 AB , Almelo, The Netherlands

DECLARATION OF CONFORMITY

for
Fluke
Frequency Counters PM6685 \& PM6685R
Fluke Industrial B.V.
Lelyweg 1
7602 EA Almelo
The Netherlands
Statement of Conformity
Based on test results using appropriate standards,
the product is in conformity with
Electromagnetic Compatibility Directive 89/336/EEC
Low Voltage Directive 73/23/EEC
Sample tests
Standards used:
EN 61010-1 (1997)
Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use

EN 61326/A1 (1998)
EMC Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use

The tests have been performed in a typical configuration.

This Conformity is indicated by the symbol $\mathcal{C} \epsilon$,
i.e. "Conformité Européenne".

Chapter 1

Preface

Introduction

Your PM6685 Counter is designed to bring you a new dimension to portable and bench-top counting. It offers significantly increased performance compared to traditional counters. The counter offers the following advantages:

- Ten digits of frequency resolution per second and 250 ps resolution, as a result of high-resolution interpolating reciprocal counting
- A 1.3 GHz or a 3.0 GHz input frequency option
- A foolproof autotrigger function

New Powerful and Versatile Functions

The unique versatile autosensitivity and autowaveform compensation takes care of all triggering from 50 Hz and up. It even optimizes itself to the requirements of different measuring functions.

Another unique feature in your instrument is the bar-graph level monitor. It always shows you the input signal level on a dB scale to verify proper signal strength.

The burst frequency and PRF functions measure bursts and AM signals without any external synchronization signal.

To solve even tougher tasks, the counter has complete arming possibilities which lets you synchronize measurements with external events. You can even delay the arming of the counter (compare to delayed timebase triggering in an oscilloscope). Read more about Arming in Chapter 7, "Measurement Control".

No Mistakes

You will soon find that your new counter is a delight to operate. One example is the backlight LCD that shows you measurement results, setting status, and operator messages. The AUTO function triggers automatically on any input waveform. A bus-learn mode simplifies GPIB programming. With bus-learn mode, manual counter settings can be transferred to the controller for later reprogramming. There is no need to learn code and syntax for each individual counter setting if you are an occasional bus user.

Design Innovations

State of the Art Technology Gives Durable Use

This counter and the other models in the PM668X family are designed for quality and durability. The design is highly integrated. The digital counting circuitry consists of just two custom-developed VLSI-ASICs and a 16-bit microcontroller. The high integration and low component count reduces power consumption and results in an MTBF of 30,000 hours. Modern production surface-mount technology ensures high production quality and a rugged mechanical construction including a metal cabinet that withstands mechanical shocks and protects against EMI.

High Resolution

The use of reciprocal interpolating counting in this instrument results in excellent relative resolution: 10 digits in one second for all frequencies, see Figure 1-1.

The measurement is synchronized with the input cycles instead of the timebase. Simulta-
neously with the normal "digital" counting, the counter makes analog measurements of the time between the start/stop trigger events and the next following clock pulse. This is done in two identical circuits by charging an integrating capacitor with a constant current, starting at the trigger event. Charging is stopped at the leading edge of the first following clock pulse. The stored charge in the integrating capacitor represents the time difference between the start trigger event and the leading edge of the first following clock pulse.

When the "digital" part of the measurement is ready, the stored charges in both capacitors are measured. The capacitors are discharged with a constant current, which is only $1 / 400$:th of the charging current, which means that the discharge time will be 400 times the charging time. This 400 -fold stretched time is digitally measured by the counter itself, with adequate resolution.

The counter's microcomputer calculates the result after completing all measurements, i.e., the digital time measurement and the two interpolation measurements.

The result is that the basic "digital resolution" of ± 1 clock pulse (100 ns) is reduced to 0.25%
 of a clock pulse cycle, or 250 ps.

Since the measurement is synchronized with the input signal, the resolution for frequency measurements is very high and is independent of frequency.

The Counter has 10 display digits to ensure that the display does not restrict the display resolution. It also has an overflow function that lets you see digit 11 and 12.

Fig. 1-1 Resolution of the counter.

New Fast SCPI Bus

The counter is not only an extremely powerful and versatile bench-top instrument, it also features extraordinary IEEE-488 bus properties. To ensure compatibility now and in the future, the Counter incorporates the latest IEEE-488.2 bus standard and the internationally standardized SCPI Command set (Standard Commands for Programmable Instruments). The bus transfer rate of the Counter is up to 1,000 measurements over the IEEE-488 bus, and 1,600 measurements per second to internal memory. This very high measurement rate makes new measurements possible. For example, you can perform jitter analysis on several thousands of pulse width measurements and capture them in a second. Together with the IEEE-488 interfaces you get an extensive programming manual that helps you understand SCPI and programming of the counter.

You get an analog recorder output as standard with all IEEE-488 interfaces. This output provides an analog signal proportional to the value of any three consecutive display digits. The output can be used for recordings of measurements on a strip-chart recorder or as a feedback signal to an analog control system.

The counter is easy to use in IEEE-488 bus environments. A built-in bus-learn mode makes it possible to transfer the complete counter setting to the controller after having made all individual settings manually via the front panel. The response can later be used to reprogram the counter to the same settings. This eliminates the need for the occasional user to learn all individual programming codes. Complete (manually set) counter settings can also be stored in 20 internal memory locations and can easily be recalled for use at a suitable opportunity. Another user-friendly feature is macro-programming. You can define your own mnemonics and de-
fine group settings for complex measurements, then reduce them to one macro command.

The GPIB interface, the Analog Output included, makes up the PM9626/031 option that can be easily installed after purchase.

Rubidium Counter

The PM6685R contains an atomic reso-nance-controlled timebase (rubidium) that gives a new meaning to $10-12$ digit measurements.

The battery unit PM9623 is unnecessary in this model, nor can it be built in.

The PM6685R uses a larger cabinet due to the size and power requirements of the rubidium timebase. The standard outfit also includes a fan.

Chapter 2

Safety Instructions

Introduction

Read this page carefully before you install and use the instrument.

This instrument has been designed and tested according to safety Class 1 requirements of IEC publication 1010-1 and CSA 22.2 No.231, and has been supplied in a safe condition. The user of this instrument must have the required knowledge of it. This knowledge can be gained by thoroughly studying this manual.

This instrument is designed to be used by trained personnel only. Removing the cover for repair, maintenance, and adjustment of the instrument must be done by qualified personnel who are aware of the hazards involved.

Fig. 2-1 Do not overlook the safety instructions!

Safety Precautions

To ensure the correct and safe operation of this instrument, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual.

Caution and Warning Statements

CAUTION: Shows where incorrect procedures can cause damage to, or destruction of equipment or other property.

WARNING: Shows a potential danger that requires correct procedures or practices to prevent personal injury.

Symbols

$\stackrel{(}{)}$
Shows where the protective ground terminal is connected inside the instrument. Never remove or loosen this screw.

Indicates that the operator should consult the manual.

One such symbol is printed on the instrument, beside the A input. It points out that the damage level for the input voltage decreases from $350 \mathrm{~V}_{\mathrm{p}}$ to $12 \mathrm{~V}_{\mathrm{rms}}$ when you switch the input impedance from $1 \mathrm{M} \Omega$ to 50Ω.

Another such symbol is printed near the battery switch on the rear panel. Read more about the battery switch on page 4-11. (Not for the PM6685R)

If in Doubt about Safety

Whenever you suspect that it is unsafe to use the instrument, you must make it inoperative by doing the following:

- Disconnecting the line cord
- Clearly marking the instrument to prevent its further operation
- Informing your local Fluke Service Center. For example, the instrument is likely to be unsafe if it is visibly damaged.

Disposal of Hazardous Materials

If your counter has a rechargeable battery option, that option uses lead-acid batteries of a type similar to automotive starter batteries. When the batteries no longer work properly, dispose of them at a battery recycling station. You can of course return these batteries to Fluke for recycling as well.

This page is intentionally left blank

Chapter 3

Preparation for Use

Unpacking

Check that the shipment is complete and that no damage has occurred during transportation. If the contents are incomplete or damaged, file a claim with the carrier immediately. Also notify your local Fluke sales or service organization in case repair or replacement may be required.

Check List

The shipment should contain the following items:

- The PM6685 Counter
- Line cord
- This Operators Manual
- Options you ordered should be installed. See "Identification."
- Programming Manual (when GPIB option is installed).
- N-to-BNC Adapter, (only with prescaler PM9624)

Identification

Check marks on the rear panel show what options are installed in your counter, see Figure 3-2.

Installation

Supply Voltage

- Setting

The Counter may be connected to any AC supply with a voltage rating of 90 to $265 \mathrm{~V}_{\mathrm{rms}}, 45$ to 440 Hz . The counter automatically adjusts itself to the input line voltage.

■ Fuse

A $1.6 \mathrm{~A} / 250 \mathrm{~V}$ slow blow fuse is placed inside the counter. This fuse rating is used for the full voltage range.

Fig. 3-1 $1.6 A T$ 5x20mm fuse

> CAUTION: If this fuse is blown, it is likely that the power supply is badly damaged. Do not replace the fuse. Send the counter to the local Service Center.

- Battery Supply (Not for the PM6685R)

It is possible to run the counter from an optional battery supply, the PM9623.

With a battery unit installed, the counter can operate without line power supply. The annunciator "LO BAT" will be displayed a few minutes before the battery is discharged.

Charging

You must Charge the battery before use or storage. The counter charges the battery automatically when connected to line power, whether the instrument is in standby or turned on.

Grounding

Grounding faults in the line voltage supply will make any instrument con-
 nected to it dangerous. Before connecting any unit to the power line, you must make sure that the protective ground functions correctly. Only then can a unit be connected to the power line and only by using a three-wire line cord. No other method of grounding is permitted. Extension cords must always have a protective ground conductor.

Fig 3-2 Check marks on rear panel showing options included.

CAUTION: If a unit is moved from a cold to a warm environment, condensation may cause a shock hazard. Ensure, therefore, that the grounding requirements are strictly met.

WARNING: Never interrupt the

 grounding cord. Any interruption of the protective ground connection inside or outside the instrument or disconnection of the protective ground terminal is likely to make the instrument dangerous.
Orientation and Cooling

The counter can be operated in any position desired. Make sure the air flow through the ventilation slots at the top and side panels is not obstructed. Leave 5 centimeters (2 inches) of space around the counter.

Fold-Down Support

For bench-top use, a fold-down support is available for use underneath the counter. This

Fig. 3-3 Fold-down support for comfortable bench-top use.
support can also be used as a handle to carry the instrument.

Rackmount Adapter

Note: The PM6685 and the PM6685R use different adapters. See Ordering Information.

If you have ordered a 19 inch rackmount kit for your instrument, it has to be assembled after delivery of the instrument. The rackmount kit consists of the following:

- 2 brackets, (short, left; long, right)
-4 screws, M5 x 8
-4 screws, M6 x 8

WARNING: When you remove the cover you will expose live parts and accessible terminals which can cause death.

WARNING: Capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources.

- Assembling the Rackmount Kit

Make sure the power cord is disconnected from the instrument.

Turn the instrument upside down.

- Loosen the two screws (A) at the rear feet.
- Grip the front panel and gently push at the rear.
- Pull the instrument out of the cover.
- Remove the four feet from the cover.

Use a screwdriver as shown in the following illustration or a pair of pliers to remove the springs holding each foot, then push out the feet.

- Remove the two plastic lids that cover the screw holes on the right and left side of

the front panel.
- Push the instrument back into the cover.
- Turn it upside down
- Install the two rear feet with the screws (A) to the rear panel.
- Fasten the brackets at the left and right side with the screws included as illustrated below.

- Fasten the PM6685 or the PM6685R in the rack via screws in the four rack mounting holes

■ Reversing the Rackmount Kit

The instrument may also be mounted to the right in the rack. To do so, first remove the plate on the long bracket and fasten it on the short one, then perform the preceding steps.

Chapter 4

Using the Controls

About This Chapter

This chapter gives you a quick introduction to all the controls of the counter, the design of the user interface, and front panel text. For the occasional user, the information in this chapter is often sufficient to solve a measurement problem.

The User Interface

Keys

Most keys are simple toggle keys that turn on and off the function printed above the key. Most of the keys have an on/off annunciator in the display directly over the key. This annunciator is on when the function is active.

Auxiliary Menu Selection

Functions which are not so frequently used are gathered together in the AUX MENU. To select from this menu:

- Press AUX MENU and scroll through the functions with the $<$ FUNCTION $>$ key.
- Press ENTER when the function you are looking for is displayed. Now new selections appear.
- Press DATA ENTRY keys or〈FUNCTION to select.
- Press ENTER to confirm the selection.

Changing Numerical Values

You must enter numerical values when you set the following:

- Measuring time.
- Arming delay.
- Reference values for nulling.
- Timeout.
- Scaling factor for the analog output (when GPIB option is installed).
The counter has no numerical keypad, so you must use the following keys:
- Coarse Adjustment
- Press DATA ENTRY \mathbf{A} or FUNCTION $>$ to increase, and DATA ENTRY $\boldsymbol{\nabla}$ or \langle FUNCTION to decrease a value in 1-2-5 steps.

■ Fine Adjustment

- Press SENS $>$ and the parameter to be set expands over the entire display.
- A cursor flashes to the left of the MSD digit. Move this cursor to the digit you want to change. Use the \langle SENS keys.
- Change the value of the selected digit by pressing the DATA ENTRY keys.
- The sign (+ or -) is changed when the cursor flashes to the left of the MSD (only minus is indicated).
Move the cursor to the next digit and repeat the above procedure until the display shows the desired value. Then press ENTER to confirm the selection.

Default Settings

PARAMETER	VALUE/ SETTING
Input A:	
Sensitivity	AUTO
Trigger level	AUTO
Impedance	$1 \mathrm{M} \Omega$
Trigger slope	Pos
Filter	OFF
Arming:	
Start	OFF
Start Delay	OFF
Stop	OFF
Miscellaneous:	
Function	FREQ A
Null/offset	OFF
Time out	OFF
Measuring time	0.2 s
Check	OFF
Single cycle	OFF
Analog output control	OFF
Auxiliary functions	All switched OFF
Blank LSD	OFF

Table 4-1 Settings directly after the counter has been switched on, or the counter has been PRESET.

Basic Controls

STAND-BY LED

Lit when the counter is off, but power is available to an oven oscillator.

LOCAL/ PRESET

The instrument will ask Default? If you press ENTER the counter will return to preset (default) settings (see page 4-3).

If in Remote mode: the counter switches to local operation.

> Up and running in no time!
> - Turn on the counter by pressing the ON key.
> Connect a signal to the input.
> - Select function with the FUNCTION key.

Now the counter automatically measures with optimum input settings.

STANDBY/ON
Press ON and the counter turns on and returns to its default (standard) setting. If you want to recall the settings you used before you turned off the counter, press AUX MENU, then press ENTER twice. Press STAND-BY to turn off the counter.

FUNCTION
Selects measuring function

INPUT A

This input is used for all measuring functions except frequency C and Ratio C/A. It measures signals with frequencies between 10 Hz and 300 MHz and levels between 30 mVpp and 70 Vpp .

INPUT C

This input is used for high frequency measurements. The frequency range is printed above the connector. This is an option and if no connector is installed you do not have this function. The C input is fully automatic and no controls affect its performance.

Input A Controls

WAVEFORM

Offsets the trigger level, when the AUTO function is switched off, for signals with:
very low duty cycle
normal duty cycle
very high duty cycle

AUTO

This key switches on the auto sensitivity and auto waveform compensation.
AUTO selects 33% of Vpp as sensitivity for input A, and it adjusts to the waveform more accurately than the three choices available via manual setting.
Both the waveform and the SENS keys switches off AUTO.

SENSITIVITY

Increases or decreases the sensitivity of the counter when the AUTO function is switched off. The set sensitivity is shown on the bar graph display.
If you turn off AUTO by pressing the SENS keys, the selections made by AUTO remain as fixed settings.

Filter

Switches on and off the 100 kHz low pass filter. This filter removes high frequency interference when measuring on LF sine wave signals.
50Ω
Switches between $50 \Omega / 1 \mathrm{M} \Omega$ input impedance.
$1 \mathrm{M} \Omega$ allows the counter to measure without loading down the measuring signal while 50Ω terminates the cables in 50Ω systems, minimizing reflections and interference.

SLOPE

The trigger slope can be set in the AUX MENU; see chapter 10, "Auxiliary functions".
This selection is intended for negative pulse width and negative duty factor measurements. The negative slope of the waveform indicator flashes when the counter triggers on negative slopes.

Measurement Control Keys

MEASURING TIME

Sets measuring time between 800 ns and 400 s .
Use FUNCTION key to step up/down the time in 1-2-5 steps. The measuring time works like the exposure time of a camera, a long measuring time captures more information giving more details to the result (higher resolution).

SINGLE

When on, the result from each measurement cycle is displayed. Now the set measuring time becomes the Display Time (time between measurements). When off, the counter averages all data captured during the set measuring time.

On while a measurement proceeds.

EXT REF

Switches between the external and the internal Timebase

GATE LED

Display Controls

DISPLAY HOLD

Freezes the display until you press the key again. New measurements are armed every time MEAS RESTART is pressed. Starts/stops the measurement in TOT A MAN.

NULL

The NULL function stores the current result on the display, then shows all the following results as deviation from that result. You can read and change the stored reference in the AUX MENU

BLANK DIGIT

Each press on this key blanks out one display digit, starting with the LSD.
When all digits are blanked, the next press disables the blanking.

Display

MEASURING FUNCTIONS

The current measuring function is shown on the display.

If MENU is pressed, all possible selections are shown on the display and the current setting is blinking.

NUMERICAL PRESENTATION

A 10-digit display used for showing measuring results and other values.

The display always shows basic units (Hertz, counts or seconds) plus an exponent when necessary.

ENTER

Displayed when the instrument wants you to confirm a selection by pressing ENTER.

OVERLOAD

Flashes if you press 50Ω when the input signal is 12 to $24 \mathrm{~V}_{\text {rms }}$. Press 50Ω again to confirm selection. If OVERLOAD turns off, the input signal falls below $12 \mathrm{~V}_{\text {rms }}$ when loaded with 50Ω.

Caution: Immediately disconnect the signal if this annunciator is on; otherwise the input could be seriously damaged.

OFFSET

Read more about the offset annunciator on page 5-5 under "Auto Once".

INPUT SETTINGS

Input settings are shown on the display directly above the key used for each setting.

LEVEL/SENSITIVITY BAR GRAPH

Shows Input Level A between -27 dB and +33 dB ($3 \mathrm{~dB} / \mathrm{bar}$) when AUTO is ON. Level above +33 dB is indicated by an arrow at the right edge of the graph. When AUTO is OFF, it shows sensitivity. Max. Sensitivity, $-27 \mathrm{~dB}=$ all segments, except the leftmost, are off.

Display

REMOTE
On when the instrument is controlled from the GPIB. Press LOCAL to go to local control.

MEMORY

This indicator is ON when a setting has been recalled from, or saved in memory. MEMORY is only ON until something is changed in the instrument setting

OVERFLOW

When this annunciator is on, the counter has measured an 11 or 12 digit result, and shows the 10 least significant digits on the display. The overflow function is enabled/disabled in the AUX MENU.

BURST and PRF

One of these segments are ON when the instrument is set up for a frequency burst measurem. via AUX MENU.

SRQ

ON when the instrument has sent a Service Request via GPIB but the controller has not fetched the message.
Reading the status byte via the controller will show what caused the SRQ and turn off the annunciator.

LOW BATTERY

ON when the optional battery needs charging.

ARMING

Indicates that the Arming function is in use and shows the selection of positive or negative slope for arming start/stop.

Rear Panel

GPIB OPTION

ANALOG OUTPUT

Outputs any 3 consecutive digits on the display as 0 to 4.98 V .

GPIB ADDRESS

SWITCH
Selects address between 1 and 30 . The display shows the address every time the counter is turned on.

GPIB CONNECTOR

A standard IEEE 488.1 connector for connection to a controller.

10 MHz OUTPUT

A frequency reference output to be used by other instrument.

REFERENCE INPUT

If you have an in-house reference or want to run several instruments on the same reference, connect 10 MHz here and select it by pressing the EXT REF key on the front.

Rear Panel

EXT SUPPLY

Connector for external DC powering of the counter.

This is part of the rechargeable battery option.

ARMING (Input E)

An arming input used to start and stop the measurement with external signal.
Also used as an extra measuring input for Ratio measurements.

INTERNAL BATTERY SWITCH (Option)

ON
The rechargeable battery option powers the counter whenever the line power is unplugged.
To extend the battery life, you can turn off the backlighting in the AUX MENU.
OFF/EXT DC The counter is powered from AC line or external DC source, and the battery is charged.

FUSE

There is a 1.6 A slow-blow primary fuse inside the housing. If blown, the fuse should not be replaced without a thorough examination of the power supply.

PM6685R Front Panel

- Operation

- Switch on the counter.
- Locate the UNLOCKED indicator to the right on the front panel. As long as this indicator is lit, the timebase is warming up.

Chapter 5

Input Signal Conditioning

Introduction to this chapter

This chapter describes how the input amplifier operates, and when and how to set its controls.

Input A

The input amplifier adapts the measuring signal to the measuring logic of the counter.

The built-in microprocessor automatically controls the trigger level, sensitivity, and attenuation of the input amplifier. This AUTO function is so powerful that you scarcely ever need to turn it off. At four measurements per second it is quick enough to enable real-time adjustments, and it works down to 50 Hz .
measurements a wide hysteresis band that reduces noise and gives time measurements the narrow band they need to minimize trigger error. AUTO ON is the recommended setting for 99% of all measurements.

You can easily switch off the AUTO function, but to successfully set these parameters manually, it is essential to understand how the controls work with the AC-coupling of the input. Read more about it further on under AUTO OFF.

The block diagram shows the order in which the different controls are connected. This is not a complete technical diagram; it is only intended to help in understanding the controls.

The AUTO function even adapts itself to different measurements. It gives frequency-related

Fig. 5-1 PM6685 Signal Conditioning Block Diagram.

Triggering

- AUTO ON

AUTO The AUTO key turns the auto function on. Switching on the power always activates AUTO.

The auto triggering function of the counter controls both the sensitivity (also called trigger window or hysteresis) and the waveform compensation (also called trigger level offset, or duty factor compensation). Auto measures the peak-to-peak levels of the input signal and sets the upper level of the hysteresis band to 66% and the lower level to 33% of that value (for pulse width and duty factor measurements, both levels are set to 50\%). AUTO accurately sets the waveform compensation to compensate for duty factors other than 50%. The waveform
indicator shows the symbol that is closest to the auto-selection made.

Auto sets the waveform compensation much more accurately than is possible manually. So it is likely that the auto trigger can handle signals that are impossible to trigger on manually.

If the duty factor of the signal changes very much, the auto function can follow a slow change, but signals with rapidly changing duty factors are best measured with a DC-coupled timer/counter, such as the PM6680B.

> Turn off AUTO:

- If the input frequency is $<50 \mathrm{~Hz}$
-If you measure AM signals
-If you measure single shot phenomena

Speed

The counter measures amplitude and calculates sensitivity and trigger level offset rapidly. The typical time is 50 ms . If you use the counter in an automatic test system and need faster measurements, read about speed in chapter 19 "How to Measure" in the GPIB Programming Manual.
Hysteresis band (SENS)

Fig. 5-2 Parameters controlled by SENS and Waveform keys.

- AUTO OFF

Switch to manual triggering by pressing the waveform key $-\sqcap \sqcap \sqcup \quad \square$ so that he AUTO TRIG annunciator on the display is switched off.

The sensitivity and waveform indicators return to the last manual settings, and you can control the input amplifier by pressing the SENS and the WAVEFORM keys.

When to use manual sensitivity

- The most obvious use for manual settings is for signals below 50 Hz , for which AUTO does not function.
- When measuring on non-repetitive signals, you also need to use manual trigger levels; see Chapter 6.
- When measuring AM signals.
- When measuring sine wave signals with little noise, you may want to measure with a high sensitivity (narrow hysteresis band) to reduce the trigger uncertainty. Triggering at or close to the middle of the sig-
nal leads to the smallest trigger (timing) error since the signal slope is steepest at the sine wave zero crossing, see Figure 5-9.

<SENS $>$ Press the $<$ SENS and
 SENS $>$ keys to set manual sensitivity.

The hysteresis band can be set between 10 mV and 10 V and is shown on the bar graph.

It is much easier to set the correct sensitivity if you know the signal level. Read the level on the bar graph before switching off AUTO.

You can use the WAVEFORM key to compensate a waveform in three steps:
$\longrightarrow(0-25 \%$ duty factor)
$\sqcap \sqcup(25-75 \%$ duty factor)
$\square(75-100 \%$ duty factor)
The reason for this setting is that non-symmetrical signals do not center on 0 V , but get a dc shift after the ac coupling capacitor. Signals with less than 50% duty factor have a

Fig. 5-3 Dc shift caused by the ac coupling capacitor.
positive dc shift, and signals with more than 50% duty factor have a negative dc shift, see Figure 5-3. When the duty factor exceeds a certain factor, the input will stop triggering unless the trigger window is offset to compensate for the dc shift of the signal.

- AUTO Once

Press one of the $\boldsymbol{<}$ SENS $>$ keys when AUTO is on. Now the counter will switch to manual settings and freeze the last sensitivity and trigger level offset selections made by AUTO. The OFFSET annunciator on the display is on to show that the counter uses a trigger level offset that cannot be manually entered. You can use the $<$ SENS $>$ keys to adjust the sensitivity around the frozen trigger level offset. When you press the WAVEFORM key, the counter returns to one of the three ordinary trigger level offset selections.

■ Analog Low-Pass, Noise Suppression Filter

FILTER Input signals having a sig-nal-to-noise ratio less than approximately 6 dB cannot be measured successfully without filtering in one way or another.

The counter has an analog LP (Low-Pass) filter with a cutoff frequency of approximately 100 kHz and a signal rejection of 40 dB at 1 MHz .

Fig. 5-4 Characteristics of LP filter.

Accurate frequency measurements of noisy LF (Low Frequency) signals (less than 200 kHz) can be made, even when the noise components are significantly higher in frequency than the fundamental signal.

- Impedance

$50 \Omega \quad$ The input impedance can be set to $1 \mathrm{M} \Omega$ or 50Ω.

Before switching to 50Ω, the counter checks to see if the amplitude of the signal exceeds the maximum allowed $12 \mathrm{~V}_{\text {rms }}$. If it does, the overload annunciator on the display flashes and the counter does not switch to 50Ω unless you press the 50Ω key once more.

You can force the counter to 50Ω this way since a too high signal may fall below $12 \mathrm{~V}_{\mathrm{rms}}$ when loaded with 50Ω.

- If the signal falls below the limit, the overload annunciator will turn off and you can continue to measure.
- If the annunciator remains on, quickly disconnect the signal cable from the input A BNC connector. Here you must use an external 50Ω termination that can withstand the power you feed into it.

If the signal check shows an amplitude above $24 \mathrm{~V}_{\mathrm{rms}}$, the overload annunciator will turn on and the counter will refuse switching to 50Ω.

CAUTION: To avoid permanent damage to the input amplifier, do not connect signals with amplitudes above $12 \mathrm{~V}_{\mathrm{rms}}$ to the counter when the counter is already set to 50Ω.

Input C

Input C is the input for the optional prescalers. As opposed to input A, input C can only measure frequency. All prescalers are fully automatic and require no settings at all.

Reducing Noise and Interference

Sensitive counter input circuits are, of course, also sensitive to noise. By matching the signal amplitude to the counter's input sensitivity, you reduce the risk of erroneous counts from noise and interference. These could otherwise ruin a measurement.

To ensure reliable measuring results, the counter has the following functions to reduce or eliminate the effect of noise.

- Continuously variable sensitivity.
- Analog low-pass noise suppression filter.
- Trigger level offset.

To make reliable measurements possible on very noisy signals, you may use several features simultaneously. Optimizing the input amplitude and optimizing the trigger sensitivity by using the sensitivity control are independent of input frequency and useful over the entire frequency range. LP filters function selectively over a limited frequency range.

Fig. 5-5 Trigger hysteresis.

Fig. 5-6 Erroneous Counts due to Noise.

Fig. 5-7 Trigger Uncertainty due to Noise.

Fig. 5-8 Low Amplitude delays the Trigger Point.

Trigger Hysteresis

Each trigger device has some hysteresis (or trigger window) that the signal must cross before triggering occurs. Other names are "trigger sensitivity" or "noise immunity" and explain the various characteristics of the hysteresis.
Fig. 5-5 and 5-6 show how spurious signals can cause the input signal to cross the trigger or hysteresis window more than once per input cycle and cause erroneous counts.

Figure 5-7 shows that less noise still influences the trigger point by advancing or delaying it, but it does not cause erroneous counts. The trigger (timing) uncertainty in Figure $5-7$ is shown as trigger uncertainty or trigger error. This trigger uncertainty is important when measuring low frequency signals, since the signal slew rate (in V / s) is low for LF signals. To reduce the trigger uncertainty, it is de-
sirable to cross the hysteresis as fast as possible. Figure 5-8 shows that a high amplitude signal passes the hysteresis faster than a low amplitude signal. For low frequency measurements, where the trigger uncertainty might be important, the sensitivity should

Fig. 5-9 Timing error due to slew rate. be as high as possible, due to the trigger timing error (se Figure 5-9).

In practice however, trigger errors caused by erroneous counts (Figure 5-5 and 5-6) are much more important and require just the opposite measures to be solved.

To avoid erroneous counting caused by spurious signals, you need to avoid excessive input signal amplitudes. This is particularly valid when measuring on high impedance circuitry and when using the $1 \mathrm{M} \Omega$ input impedance. Under these conditions, the cables easily pick up noise.

External attenuation reduces the signal amplitude, including the noise, while the internal sensitivity control in the counter reduces the counter's sensitivity, including sensitivity to noise. Reduce excessive signals with external coaxial attenuators. You can set the input sensitivity of the counter continuously between $10 \mathrm{mV}_{\mathrm{pp}}$ and 10 V p.

The auto function normally takes care of setting the hysteresis band by setting its limits to 33% and 66% of the amplitude.

- Stable readings

As a rule, stable readings are free from noise or interference.

However, stable readings are not necessarily correct; harmonic distortion can cause erroneous yet stable readings.

If you cannot obtain a stable reading, the sig-nal-to-noise ratio is too poor (assumably poorer than six to ten decibels), and you should use a filter.

Chapter 6

Measuring Functions

Introduction to This Chapter

This chapter describes the different measuring functions of the counter. The functions have been grouped as follows:

Frequency Measurements

- Frequency
- Burst frequency and PRF
- AM
- Ratio

Period Measurements

- Period

Pulse Width Measurements

- Pulse width
- Duty factor

Totalize Measurements

- Totalize A-B Manual

Selecting Function

FUNCTION Press one end of the FUNCTION key. This scrolls the function cursor on the display. Release the key when the desired function is high-lighted.

Frequency

Introduction

Frequency is the basic function of a frequency counter. The PM 6685 measures frequency between 10 Hz and 300 MHz on the A input, and up to 3.0 GHz on the optional C input. Frequencies above 50 Hz are best measured using the AUTO triggering and the default measuring time of 200 ms . The counter always starts up with Frequency A selected and AUTO ON, ready to measure.

Fig. 6-1 Frequency is measured as the inverse of the time between the one trigger point and the next.
$f=\frac{1}{t}$

Theory of Measurement

Reciprocal Counting

Simple frequency counters count the number of input cycles during a preset gate time, for instance one second. This leads to the ± 1 input cycle count error that, at least for low-frequency measurements, is a major contribution to uncertainty.

However, this counter uses a high-resolution, input signal synchronized, reciprocal counting technique. With this technique, the counter counts an exact number of integral input cycles, thereby eliminating the ± 1 cycle error.

Fig. 6-2 Synchronization of a measurement.

After the start of the set measuring time, the counter synchronizes the beginning of the actual gate time with the first trigger event $\left(\mathrm{t}_{1}\right)$ of the input signal it measures on.

In the same way, the counter synchronizes the stop of the actual gate time with the input signal, after the set measuring time has elapsed. The multi-register counting technique in the counter allows you to simultaneously measure the actual gate time $\left(\mathrm{t}_{\mathrm{g}}\right)$ and the number of cycles (n) that occurred during this gate time.

Thereafter, it calculates the frequency according to Mr. Hertz's definition:
$f=\frac{n}{t_{g}}$
The counter measures the gate time, tg , with a resolution of only 250 ps . independent of the measured frequency. Consequently the use of prescalers does not influence the quantization error. Therefore, the relative quantization error is: $250 \mathrm{ps} / \mathrm{tg}$.

Relative RMS quantization error $=\frac{250 p s}{t_{g}}$
For a 1-second measuring time, this value is:

$$
\frac{250 p s}{1 s}=250 * 10^{-12}=2.5 * 10^{-10}
$$

Except for very low frequencies, tg is nearly identical with the set measuring time.

Signal Detection

The counter has an automatic signal detection system that terminates the measurement if no triggering has occurred about 200 ms after the measuring time has expired.

When AUTO trigger is turned on, the counter will show 5 Kinft when triggering has stopped. When AUTO trigger is turned off, the
counter will show $7 \boldsymbol{1} 9$ br when triggering has stopped.

Signal detection is ON for all functions but TOT A MAN, burst frequency, PRF, arming and single measurements.

■ Sample-Hold

If the input signal disappears during the measurement, the counter will show NO SIGNAL. If you probe test points and you cannot simultaneously view the display this will be a problem.

In that case, press DISPL HOLD to activate HOLD, put your probe tip on the test point and press MEAS RESTART. Now the counter makes one measurement, and when you remove the probe tip from the test point, the counter continues to display the measured value and behaves like a voltmeter with a sample-hold feature.

- Time-Out

Mainly for GPIB use, you can manually select a fixed time-out in the AUX MENU. The range of the fixed time-out is 100 ms to 25.5 s and the default setting is OFF.

Select a time-out that is longer than the cycle time of the lowest frequency you are going to measure; multiply the time-out by the prescaling factor of the input channel. When no triggering has occurred during the time-out, the counter will showt. But.

Measuring Speed

The set measuring time determines the measuring speed. For continuos signals,

Speed $\approx \frac{1}{t_{g}}+0.2$
when AUTO is ON and can be increased to:

Speed $\approx \frac{1}{t_{g}}+0.001$
with AUTO turned OFF.

Frequency Average and Single Cycle Measurements

To reduce the actual gate time or measuring aperture, the counter has very short measuring times and a measuring time called SINGLE. The latter means that the counter can measure during only one cycle of the input signal. In applications where the counter uses an input channel with a prescaler, this frequency divider causes the SINGLE measurement to last as many cycles as the division factor.

Prescaling May Influence Measuring Time

Prescalers do influence the actual gate time to some extent. This may be a problem for example when measuring the carrier wave frequency in a short burst signal.

Fig 6-3 shows the effect of the 3.0 GHz prescaler. For 64 input cycles, the prescaler gives one (shaped) output cycle. When the counter uses a prescaler, it counts the number of prescaled output cycles, here $f / 64$. The display shows the correct input frequency since the microcomputer compensates for the effect of the division factor d as follows: $f=n * \frac{d}{t}$

Fig. 6-3 Divide-by-64 Prescaler.
Prescalers do not reduce resolution in reciprocal counters. The relative quantization error is
still: $\frac{250 p s}{t_{g}}$.
The prescaling factors are:

Function	Prescaling factor	
BURST A	1	$(80 \mathrm{MHz})$
FREQ A average *	4	$(300 \mathrm{MHz})$
PER A average	4	$(300 \mathrm{MHz})$
FREQ C (PM9624)	64	$(3.0 \mathrm{GHz})$
FREQ C (PM9621)	512	$(1.3 \mathrm{GHz})$
RATIO A/E	$4 / 1$	$(300 / 80 \mathrm{MHz})$
RATIO C/A (PM9624)	$64 / 4$	$(3.0 / 0.3 \mathrm{GHz})$
RATIO C/A (PM9621)	$512 / 4$	$(1.3 / 0.3 \mathrm{GHz})$
TOTALIZE A	1	$(100 \mathrm{MHz})$
All other functions	1	$(80 / 60 \mathrm{MHz})$

*Note: Functions using prescaling by 4 on Input A in AVERAGE mode change the prescaling factor to 1 in SINGLE mode. At the same time the frequency range will be reduced correspondingly.

- LF Signals

Fig. 6-4 Measuring time.

Signals below 50 Hz must be measured with manual triggering. The lower frequency limit for the counter is 10 Hz for sine waves. However, the counter can measure pulses with a lower repetition rate. For example, when you
measure a 0.1 Hz pulse with a non-prescaled function like PERIOD SINGLE, the measurement will require at least the duration of one cycle, that is 10 seconds, and worst case nearly 20 seconds. The worst case is when a trigger event takes place just before the beginning of a measuring time (Fig. 6-4).

- HF Signals

As mentioned before, a prescaler in the C input divides the input frequency before it is counted by the normal digital counting logic. The division factor is called prescaling factor, see table on previous page. For example, the 3.0 GHz input has a value of 64 . That means that an Input C frequency of, e.g., 1.024 GHz is transformed to 16 MHz .

Prescalers are designed for optimum performance when measuring stable continuous RF. The prescalers have a nasty habit, and that is that they are not stable and would like to self-oscillate when there is no input signal present. To prevent a prescaler from oscillating, the prescaler incorporates a "go-detector." The go-detector continuously measures the level of the input signal and simply blocks the prescaler output when no signal, or a signal that is too weak is present.

Fig. 6-5 Go detector in the prescaler.

Burst Frequency and PRF

A burst signal as in Figure 6-6 is an AM modulated signal with 100% modulation depth. The signal has a carrier wave (CW) frequency and a modulation frequency, also called the pulse rep-
etition frequency (PRF), that switches the CW signal on and off.

With PM 6685's built-in measurement control facilities, you can measure burst signals without the external arming signals that traditional counters need. You can also make measure-

Fig. 6-6 Burst signal.
ments using external arming signals with the counter. See Chapter 7 "Measurement Control" about arming and arming delay.

When measuring Burst A or PRF A, the maximum burst frequency is 80 MHz and the minimum number of cycles in a burst is three.

- Triggering

Bursts with a PRF above 50 Hz can be measured with auto triggering on.

The out of sync error described under heading "Possible errors" on page 6-8 may occur more frequently when using autotrigger.

When PRF is below 50 Hz and when the gap between the bursts is very small, use manual triggering.

Try using AUTO ONCE to make the counter set fixed trigger levels, it will work in most cases.

Burst PRF

The pulse (burst) repetition frequency can be measured as follows by using the PRF function in the AUX MENU:

- Press MEAS TIME and enter a measuring time that gives you the resolution you want.
- Switch off SINGLE.
- Press AUX MENU, select PRF, and press ENTER.
- Select channel A or C as measurement input, and press ENTER.
- Set a sync delay longer than the burst duration and shorter than the burst repetition period. See Fig. 6-7.
- Press ENTER to measure.

Fig. 6-7 Set the sync delay so that it expires in the gap between the bursts.

■ How Does PRF Work?

The PRF is the number of bursts per second. This means that the counter must count one pulse in each burst.

Fig. 6-8 Measuring Burst Pulse Repetition Frequency.

When the PRF function is on and the counter is triggered, all further input triggering is blocked until the PRF sync delay has expired. When correctly set, the PRF delay should expire in the gap between the bursts, making the counter ready to measure again when the next burst arrives.

The selected measuring time is not used for synchronization. It only decides how many bursts the counter should use for averaging, i.e., the resolution.

Burst Frequency Using Sync Delay

You can measure the frequency on Input A to 80 MHz with the internally synchronized BURST function as follows:

Internal burst synchronization also works with the prescalers PM 9621 and PM 9624, but with limited specifications.

- Select a measuring time that is shorter than the burst duration minus two burst frequency cycles or pulses.
- Press AUX MENU, select BURST, and press ENTER.
- Select channel A or C as measurement input, and press ENTER.
- Set a sync delay longer than the burst duration and shorter than the burst repetition period. See Figure 6-7.
- Press ENTER to measure.

Selecting Measuring Time

The measuring time must fit inside the burst. Should the measurement also include part of the burst gap, no matter how small, the measurement is ruined. Choosing a measuring time that is too short is better since it only reduces the resolution. Making burst frequency mea-
surements on short bursts means using short measuring times, giving a poorer resolution than normally achieved with the counter.

■ How Does the Sync Delay Work?

The sync delay works as an internal start arming delay: it prevents the start of a new measurement until the set sync delay has expired. See Figure 6-9.

Fig. 6-9 Measuring the frequency of the carrier wave signal in a burst.

After the set measuring time has started, the counter synchronizes the start of the measurement with the second trigger event in the burst. This means that the measurement does not start erroneously during the Burst Off duration or inside the burst.

- Possible Errors

Before the measurement has been synchronized with the burst signal, the first measurement(s) could start accidentally during the presence of a burst. If this would happen and if the remaining burst duration is shorter than the set measuring time, the readout of the first measurement will be wrong. However, after this first measurement, a properly set start-arming sync delay time will synchronize the next measurements.

In manually operated applications, this is not a problem. In automated test systems where the result of a single measurement sample must be
reliable, at least two measurements must be made, the first one for synchronizing the measurement and the second one for reading out the measuring result.

Autosync on Slow-Starting Bursts

Bursts may start a bit slowly, especially RF bursts. The result when measuring the burst frequency will then be erroneous unless the first few pulses are excluded from the measurement.

A delay can be used that starts on the first negative slope of the burst, and expires when the set arm start delay ends.

- Preparations

- Switch off the AUTO function.
- Check that the waveform compensation shows

- Set a suitable sensitivity.

■ Switching on Burst Measurements

- Press AUX MENU.
- Select BURST.
- Press ENTER.
- Select A or C.
- Press ENTER when the display shows SYNC DELAY.
- Enter a synchronization delay that is longer than the burst duration but shorter than the burst repetition time.
- Press ENTER.
- Press MEAS TIME and select 800 ns .
- Increase the measuring time until you get the number of digits you want. Take care not to increase it so much that the counter counts incorrectly
- Now the counter measures the frequency inside the burst, starting with the first pulse.
So far this description is the same as for normal burst frequency.

Switching on Arming Delay

- Press AUX MENU.
- Select ARM START.

Fig. 6-10 Three time values must be set to measure the correct part of a burst

- Press ENTER and the display will show POS.
- Regardless of selecting POS or $N E G$, the arming delay will trigger on the negative slope of the signal.

- Select DELAY ON.

- Enter a delay that equals the part of the burst that you want to mask.

- Press ENTER.

Now the counter measures on the remaining part of the burst.

Make sure that the delay plus measuring time is shorter than the burst length.

As long as burst is ON, the arming delay is triggered by the burst itself, not by the arming signal on input E.

Switching Off Burst

Don't forget to switch off arming start when you switch off BURST in the AUX MENU or change function. Otherwise the counter will not measure unless there is an arming signal on Input E.

Burst Frequency Using External Arming

The counter can also measure burst frequencies on the GHz input C options. However, to ensure good synchronization, this requires an external synchronization signal and the use of arming and arming delay.

The counter will measure correctly when an adequate, continuous, input signal is present. When this signal disappears, however, as is the case with burst signals, the prescaler oscillates and generates an output frequency on its own. The counter would erroneously display this signal if the go-detector did not block the signal.

There is a drawback with the go-detector. It takes some time before the go-detector is convinced that an input signal is really present. It cannot enable the prescaler output immediately. The go-detector delay time is dependent on the input signal levels. High level input signals result in a fast go-detector reaction, whereas low-level input signals mean a longer delay. The delay is at most $50 \mu \mathrm{~s}$ for the go-detector to switch on, and 5 ms to switch off.

This means that bursts shorter than $50 \mu \mathrm{~s}$ cannot be measured at all, unless you take "special actions" and use ext. arming for synchronization.

- How to Disable the Go-Detector

The counter automatically disables the go-detector when both start arming and
FREQ C are active; thus, there is no special function to enable.

- Do the Self-Oscillations Disturb My Burst Measurement?

The answer is yes if you start to measure immediately at the first burst cycle.
The answer is no if you are wise and use start arming delay to delay the measurement: $>2 *$ prescaling factor $*$ period .

For instance when measuring 1 GHz burst frequencies using Input C (PM 9624), the delay time should be
$>2 * 64 * 1 n s=>128 n s$. Thus, the minimum delay of 200 ns is OK.

- How Do I Set Up My Measurement?

Use arming with time delay as described in the previous example.

Set up a correct burst frequency measurement as follows:

- Connect burst signal to Input C.
- Connect external SYNC to Input E.
- Use the FUNCTION key to select FREQ C.
- Set a measuring time shorter than the burst duration.
- Press the AUX MENU key, select ARM START, and positive slope (ARM STA+).
- Press ENTER.
- Enter a delay time and press ENTER.
- Measure.

AM Signals

The counter can usually measure both the carrier wave frequency and modulation frequency of AM signals. These measurements are much like the burst measurements described earlier in this manual.

Carrier Wave Frequency

The carrier wave (CW) is only continuously present in a narrow band in the middle of the signal. If the sensitivity is too low, cycles will be lost, and the measurement ruined.

To measure the CW frequency:

- Select a measuring time that gives you the resolution you want.
- Turn off AUTO.
- Press the WAVEFORM key and select symmetrical signals.
- Press 4 SENS to select the highest sensitivity and then decrease the sensitivity until the measurement result is no longer stable.
- Increase the sensitivity a couple of dB's and measure.

Fig. 6-11 Effects of different sensitivity when measuring the CW Frequency of an AM signal.

Modulating Frequency

The easiest way to measure the modulating frequency is after demodulation. If no suitable demodulator is available, use the PRF function to measure the modulation frequency in the same way as when measuring Burst PRF.

- Press MEAS TIME and enter a measuring time that gives you the resolution you want.
- Switch off SINGLE.
- Press AUX MENU, select PRF, and press ENTER.
- Select INPUT A as measurement input, and press ENTER.
- Set a sync delay of approximately 75% of the modulating period. See Figure 6-7.
- Press ENTER to leave the AUX MENU.
- Switch off AUTO.
- Press the WAVEFORM key to select symmetrical signal.
- Press SENS - until the counter stops triggering.
- Increase the sensitivity a couple of dB's and measure.

Fig. 6-12 Effects of different sensitivity when measuring the CW Frequency of an AM signal.

Ratio

Introduction

To find the ratio between two input frequencies, the counter counts the cycles on two channels simultaneously and divides the result on the primary channel by the result on the secondary channel.

Ratio can be measured between A and E inputs or between C and A inputs.

The input frequency range of input E is limited to 80 MHz .

Note also that the resolution calculations are very different from those used for frequency measurements.

Period

Introduction

From a measuring point of view, the period function is identical to the frequency function. This is because the period of a cyclic signal has the reciprocal value of the frequency $(1 / f)$.

In practice there is a minor difference.

- Where the counter calculates FREQUENCY as:

$$
f=\frac{\text { number of cycles }}{\text { actual gate time }}
$$

it calculates PERIOD as:
$p=\frac{\text { actual gate time }}{\text { number of cycles }}$

- In PERIOD SINGLE mode, the counter uses no prescaler, resulting in 80 MHz maximum frequency.
All other functions and features as described earlier under FREQUENCY apply to PERIOD measurements.

Pulse Width and Duty Factor

Introduction

Fig. 6-13 Time is measured between the trigger point and the reset point. Accurate measurements are possible only if the hysteresis band is narrow and centered around 50% of the am-

This counter can measure PULSE WIDTH and DUTY FACTOR.

Triggering

If AUTO is on when these functions are selected, the counter adjusts the trigger level to 50% and the sensitivity to maximum .

The set trigger level and trigger slope define the start and stop triggering. The manual trigger function of the counter allows only three trigger level settings. This limited selection makes it possible to trigger correctly only on signals with very steep slopes.

Always use AUTO or AUTO
ONCE when measuring Pulse Width and Duty Factor.

- Hysteresis

In pulse width measurements the trigger hysteresis, among other things, causes measuring errors. Actual triggering does not occur when the input signal crosses the trigger level at 50 percent of the amplitude, but when the input signal has crossed the entire hysteresis band. At maximum sensitivity, the hysteresis band is as small as possible, about 10 mV .

Pulse Width A

The counter measures pulse width on Input A.
Normally the counter measures the positive pulse width. If you want to measure the negative pulse width, you must select negative trigger slope in the AUX MENU. The selected trigger slope controls the start trigger slope. The counter automatically selects the inverse polarity as stop trigger slope. Thus, if positive slope has been selected, the counter starts measuring on the first positive slope; then the first negative slope stops the counting.

Duty Factor

A duty factor (or duty cycle) measurement consists of two measurements: one pulse width measurement and one period measurement. The duty factor is then calculated as:

Duty factor $=\frac{\text { Pulsewidth }}{\text { Period }}$

This takes $2 x$ the set measuring time

Totalize

Totalize A Manual

This mode enables you to totalize (count) the number of trigger events on channel A. Start and stop of the totalizing is manually controlled.

The counting capability is $1 * 10^{14}$ events at rates to 100 MHz .

FUNCTION Select TOT A MAN with the FUNCTION key.

DISPL Start and stop the HOLD totalization manually by pressing the DISPLAY HOLD key.
Repetitive start/stops causes the counter to accumulate the number of events.

MEAS Press the RESTART key RESTART when you want to reset the total sum to zero.

AUTO is switched off during TOTALIZE. You must always set manual trigger level.

Chapter 7

Measurement Control

About This Chapter

This chapter explains how you can control the start and stop of measurements and what you can obtain by doing that. The chapter starts by explaining the keys and the functions behind them, then gives some theory, and ends with actual measurement examples.

Measuring Time

MEAS The measuring time is preTIME set to 200 ms . This gives nine digits on the display, and four measurements each second.

Increasing the measuring time gives more digits, but fewer measurements per second.

To change the measuring time:

- Press the MEAS TIME key.
- Increase/decrease the value by pressing the FUNCTION key.
- Confirm your selection by pressing MEAS TIME again.

The measuring time is changed in $1 / 2 / 5$ steps from 100 ns to 15 s . Default and preset value is 200 ms .

If you select SINGLE, the set Measuring Time becomes the Display Time (time between measurements).

- Fine-Tuning the Measuring Time

For times above $50 \mu \mathrm{~s}$, you can set your own measuring time as follows:

- Press MEAS TIME.
- Press SENS \downarrow and the parameter to be set expands over the entire display.
- A cursor flashes to the left of the MSD digit. Move this cursor to the digit you want to change. Use the \langle SENS $>$ keys.
- Change the value of the selected digit by pressing the DATA ENTRY keys $\boldsymbol{\Delta}$ and ∇.
- Move the cursor to the next digit and repeat the procedure above until the display shows the desired value. Then press
ENTER to confirm the selection.
SINGLE When SINGLE is ON, the counter shows the result from a single measurement cycle.

When SINGLE is OFF (default setting), the counter makes an average measurement over the set measuring time.

Use SINGLE when you want to measure on single-shot phenomena or when you just want fast results without the need for many digits.

The number of input periods in a SINGLE measurement depends on the prescaler factor of the input and which function is selected as follows:

All functions using Input A except DUTY FACTOR:

The result is from one period.

DUTY FACTOR:

The counter makes a composite measurement, one PERIOD and one PULSE WIDTH.

All functions using Input C:

The prescaling factor sets the number of periods used:
512 for prescaler PM 9621
64 for prescaler PM 9624

* Gate Indicator

The GATE LED is on when the counter is busy counting input cycles.

Display Hold

DISPLAY	Pressing DISPLAY HOLD HOLD
freezes the result on the display. The display is not frozen until one measure-	
	ment has been completed after DISPLAY HOLD has been pressed.
MEAS	MEAS RESTART initiates a
RESTART	new measurement.

Arming

AUX MENU	External arming gives you the opportunity to start and
\square	stop a measurement when an external qualifier event
occurs.	

Start and stop of the arming function can be set independently to positive slope, negative slope, or OFF.

Input E on the rear panel is the arming input.
Arming is somewhat complicated, so study the examples later in this chapter to see what you can obtain by using it. There is normally no need for arming except when measuring on complex signals (non-continuous wave).

Start Arming

Start arming acts like an EXT TRIGGER on an oscilloscope. It allows the start of the actual measurement to be synchronized to an external trigger event.

In a complex signal, you may want to select a certain time slot where the measurements are to be performed. For this purpose there is an arming delay function which delays the actual measurement start with respect to the arming pulse, in a similar way as a "delayed timebase" does in an oscilloscope.

Activate start arming as follows:

- Press AUX MENU; use the FUNCTION key to select AR. START and press

ENTER.

- Select POS or NEG trigger slope with the DATA ENTRY keys, and press ENTER.
- Select DELAY ON or OFF with the DATA ENTRY keys and press ENTER.
- If you enabled delay, select delay time from the predefined times using the DATA ENTRY keys. You can also enter a delay of your own by selecting a digit with the
<SENS $>$ keys and increasing/decreasing that digit with the DATA ENTRY keys. Continue with other digits until the display shows the desired delay. End by pressing ENTER.
Start arming can be used for all functions except BURST and PRF.

If you use start arming to arm an
average measurement, it only controls the start of the first sample.

Stop Arming

Stop arming prevents the stop of a measurement until the counter detects a level shift on the E input. Combining Start and Stop Arming

results in an "external gate" function which determines the duration of the measurement.

Activate stop arming as follows:

- Press AUX MENU, select AR. STOP with the FUNCTION key, and press ENTER.
- Select POS or NEG trigger slope with the DATA ENTRY keys, and press ENTER.
Stop arming can be used for all functions except PULSE WIDTH, DUTY FACTOR, BURST, and PRF.

Digit Blanking

BLANK Blanking switches off unDIGITS necessary digits on the display. Press BLANK DIGIT once for each digit you want blanked.

To turn off blanking, press BLANK DIGIT once after you have blanked all digits.

- Two Methods to Reduce the Number of Digits

Reading a 10-digit display when you do not need more than five or six takes more time than necessary, and makes the result more difficult to read.

Reducing the measuring time gives fewer digits on the display. However, it also means that each result is shown for a shorter time, with more display updates per second. If the display is to be easy to read, it should not be updated more than a few times per second as with the default measuring time, which gives four display updates per second.

Digit blanking on the other hand, decreases the number of digits on the display without increas-
ing the display update frequency. It makes it possible to switch off any number of digits between zero and ten. This means that the number of digits displayed is zero to ten less than as calculated by the counter's truncation algorithm.

Fig. 7-1 Each press on the BLANK DIGITS key removes one digit.

Controlling Measurement Timing

The Measurement Process

Basic Free-Running Measurements

Since the counter uses the reciprocal counting technique, it always synchronizes the start and stop of the actual measuring period to the input signal trigger events. In free-running mode a new measurement automatically starts when the previous measurement is finished. This is ideal for continuous wave signals.

The start of a measurement takes place when the following conditions have been met (in order):

- The counter has fully processed the previous measurement.
- If the counter makes SINGLE measurements, the display time (=set measuring time) must have expired.
- All preparations for a new measurement are made.
- The input signal triggers the counter's measuring input.
The measurement ends when the input signal meets the stop trigger conditions. That happens directly after one of the following events:
- The set measuring time has expired (in frequency measurements, for example).
- In SINGLE, the measurement stops immediately when the input signal fulfils the stop trigger conditions (which is normally when it passes the trigger window the second time).

Measuring Time and Measurement Rates

The set measuring time decides the length of a measurement in all average types of measurements. In a single-shot type of measurement, however, the measuring time instead acts as a "display time" setting. For example, if a measuring time of 500 ms is set in a single period measurement, and the period is 100 ns , the display will show the result for 500 ms before the next measurement can start.

This is important to know when you want to make fast measurements, for example, when using the GPIB bus.

To get maximum measuring speed, you should use the combined benefits of SINGLE and minimum measuring time.

The time between the stop of one measurement and the start of the next one can be below 1 ms in free-running mode if you do the following:

- Do not use AUTO.
- Do not use NULL.
- Switch off the display via GPIB.

Additional Control of Measurement Start / Stop

Free-running measurements may be easy to understand, but measurements can get more complex.

Besides input signal triggering, the start of a measurement is further controlled by the following elements:

- Manual MEAS RESTART, if DISPLAY HOLD is selected.
- GPIB triggering ($<\mathrm{GET}>$ or $*$ TRG), if bus triggering is selected.
- External arming signal, if Start Arming is selected.
- Expired start arming delay, if Arming Delay is selected.
In addition to expired measuring time and stop signal triggering, the stop of measurement is further controlled by:
- External arming signal triggering, if Stop Arming is selected.
GPIB triggering is described in the Programmer's manual. Now let's look deeper into the concept of arming.

Resolution as Function of Measuring Time

The quantization error and the number of digits on the display mainly define the resolution of the counter, that is the least significant digit displayed.

As explained on page 6-4 under Reciprocal Counting, the calculated frequency f is:
$f=\frac{n}{t_{g}}$
while the relative rms quantization error $= \pm 250 \mathrm{ps} / \mathrm{tg}$.

The counter calculates the mantissa of f with up to 15 digits. However, the number of justified digits depends on the selected measuring time and the measured frequency, and is much more limited.

The counter truncates irrelevant digits so that the rms quantization resolution cannot change the LSD (least-significant digit) more than ± 2.5 units. This is when the displayed value is 99999999, and the quantization error is worst case.

$$
\pm 1 \text { unit in } 99999999 \text { (=1E8). }
$$ means 10 times more relative resolution than ± 1 unit in 10000000 (=1E7), despite the same number of digits.

In practice, the quantization error is two to three times better than the specified value, and the measured value can range from 10000000 to 99999999. Therefore, in practice the quantization uncertainty shown as instability in the LSD can range from 0.25 to 2.5 LSD units.

A gradual increase of the measuring time reduces the instability in the LSD caused by the quantization uncertainty. At a specific measuring time setting, the counter is justified to display one more digit. That one additional digit
suddenly gives ten times more display resolution, but not a ten times less quantization uncertainty. Consequently, a measuring time that gives just one more display digit shows more visual uncertainty in the last digit.

For a stable LSD read-out, the maximum measuring time selected should be one that still gives the required number of digits. Such optimization of the measuring time enables the total resolution to be equal to the quantization resolution. This is shown in Figure 7-2 as a function of the selected measuring time.

What Is Arming?

Arming is a pretrigger condition ("qualifier") that must be fulfilled before the counter allows a measurement to start. The pretrigger condition can be compared to using a gun. When you use a gun, you must first arm the gun before you can pull the trigger.

Arming can also be used to qualify the stop of a measurement. This is called "stop arming" as opposed to the more common "start arming".

When you use arming, you disable the normal free-run mode, i.e., individual measurements must be preceded by a valid start arming signal transition.

Fig. 7-2 Resolution as a function of measuring time.

If you use start arming and stop arming together you get an externally controlled measuring time.

- Manual Arming

The counter has a manual arming function called DISPLAY HOLD. Here you manually arm individual measurements one-by-one by pressing the RESTART key.

Use this manual arming mode to measure sin-gle-shot phenomena, which are either triggered manually or occur at long intervals. Another reason for using this manual arming could simply be to allow sufficient time to write down individual results.

■ When Do I Use Start Arming?

Start arming is useful for measurements of frequency in signals, such as the following:

- Single shot events or non-cyclic signals.
- Burst signals.
- Signals with frequency variations versus time ("profiling").
- A selected part of a complex waveform signal.
Signal sources that generate complex waveforms like pulsed RF, pulse bursts, tv line signals, or sweep signals, usually also produce a sync signal that coincides with the start of a sweep, length of an RF burst, or the start of a tv line. These sync signals can be used to arm the counter. See Figure 7-3.

Fig. 7-3 A synchronization signal starts the measurement when start arming is used.

- When Do I Use Stop Arming?

You normally use stop arming together with start arming. That means that the external gating signal controls both the start and the stop of the measurement. Such a gating signal can be used to force the counter to measure the frequency of a pulsed RF signal. Here the position of the external gate must be inside a burst. See Figure 7-4.

Fig. 7-4 Start and stop arming together is used for burst signal gating.

■ The Arming Input

Input E is the arming input. This input is suitable for arming (sync) signals that have TTL levels. The trigger level is fixed at 1.4 V and cannot be changed. The trigger slope can be set to positive or negative.

■ When Do I Use Arming with Delay?

You can delay the start arming point with respect to the arming signal. Use this function when the external arming signal does not coincide with the part of the signal that you are interested in.

The range for time delay is 200 ns to 5 seconds with a setting resolution of 100 ns .

- Getting the Whole Picture

The flowchart in Figure 7-5 illustrates how arming enables precise control of the start and stop of the actual measurement when you operate the counter from the front panel. If you use the counter via the GPIB, read more about bus arming and triggering under the heading "How to Use the Trigger System" in Chapter 18, " Trigger Subsystem" of the GPIB Programming Manual.

Fig. 7-5 Measurement control flow diagram.

Arming Setup Time

The measurement is not armed until about 5 ns after the active edge of the external control signal on channel E. See Figure 7-6.

Fig. 7-6 The arming logic needs a setup time of about 5 ns.

When arming delay is selected, the setup time is different. See Figure 7-7. It illustrates the effect of the 100 ns delay resolution.

Fig. 7-7 Time from expired time delay until the measurement is armed: -60 to +40 ns .

Figure $7-7$ shows that a start trigger signal may be detected although it appears 60 nanoseconds before the programmed time delay has expired. The start trigger signal must come 40 nanoseconds after the programmed time delay has expired to guarantee correct start of the measurement.

Arming Examples

Example \#1:

Measuring Pulse Width in a Pulse Burst

In the first example we will measure the width of pulse \#1 in a repetitive pulse burst. In this example, a synchronization signal (SYNC) with TTL levels is also available. See Figure 7-8.

Fig. 7-8 Synchronizing the measurement so that the pulse width of the first pulse is measured.

Our task is to synchronize the start of the measurement (start trigger) to the leading edge of the first pulse. Depending on the signal timing, this can be easy, difficult, or very difficult.

■ A. Auto Synchronization without Arming

If we are lucky, we can manage without using the arming function at all. Often, the counter can automatically synchronize the measurement start to the triggering of the first pulse.

The conditions for success are that the pulse burst does not repeat itself more than 50 to 150 times per second. The duration of a pulse burst (between first and last pulse) must be substantially less than the distance to the next burst.

Do the following steps to perform auto synchronization without arming:

- Connect the burst signal to input A.
- Adjust the manual sensitivity and trigger level until the burst signal triggers the counter correctly.
- Use the FUNCTION key to select P WIDTH A.
- Select SINGLE measuring mode.
- Press MEAS TIME and set a measuring time according to the following text.
The measuring time setting can be used for synchronization purposes. The set measuring time does not influence the actual measurement time in SINGLE mode, but it will influence the time between measurements. If you select a measur-
ing time that almost equals the duration of a burst, the auto-synchronization will work.

Fig. 7-11 $\quad A=$ Measure
$B=$ Process time + display time (=set measuring time) minimum 3 to 4 ms
C= Waiting for next input signal trigger event.

If the repetition rate is too high, synchronization will not be guaranteed, but there is a high probability that auto-synchronization will work anyway. However, occasional erroneous values will be displayed. To achieve guaranteed synchronization, use the Start Arming function.

- B. Synchronization Using Start Arming

The SYNC signal can be directly used to arm the measurement. This requires that the leading edge of the SYNC signal occurs more than 5 ns before the leading edge of the first pulse in the burst. See Figure 7-10.

Fig. 7-9 Synchronization using start arming.

Take the following steps to perform synchronization using start arming:

- Connect SYNC to input E.
- Connect the burst signal to input A.
- Adjust the manual sensitivity and trigger level until the burst signal triggers the counter correctly.
- Press AUX MENU, select ARM START, and select arming on positive slope (ARM STA+).
- Use FUNCTION key to select PULSE WIDTH.
- Press MEAS TIME and set a short measuring time.
- Select SINGLE measuring mode and measure.
If there is no (or too little) time difference between the arming signal and the first pulse in the pulse burst, arming must be combined with a delay. See example c.

- C. Start Signal Synchronization Using Start Arming with Time Delay

If the pulse bursts have a stable repetition frequency, you synchronize the measurement using Start Arming with Time Delay. Here you use the SYNC pulse belonging to a preceding burst to synchronize the start of measurement. Set the time delay to a time longer than the duration of a pulse burst and shorter than the repetition time of the pulse bursts. See Figure 7-11.

Fig. 7-10 Synchronization using start arming with time delay.

Take the following steps to start signal synchronization using start arming with time delay:

- Connect SYNC to input E.
- Connect the burst signal to input A.
- Adjust the manual sensitivity and waveform until the burst signal triggers the counter correctly.
- Press the AUX MENU, select ARM START, and arming on positive slope (ARM STA+), and press ENTER.
- Select delay ON using DATA ENTRY keys and press ENTER.
- Enter a suitable delay, and confirm with ENTER.
- Use FUNCTION key to select PULSE WIDTH.
- Press MEAS TIME, and set a short measuring time.
- Select SINGLE measuring mode, and measure.

Example \#2

Measuring Frequency in Two-Tone Bursts

Sonar bursts can consist of two different frequencies with different durations. See Figure 7-12

Fig. 7-12 A two-tone burst with its sync pulse.

To measure the frequency of the first part is normally no problem. Because of the reciprocal measurement, the counter automatically synchronizes the measurement with the start of the burst. And for fool-proof synchronization, start arming can be used, as in Figure 7-13. The measuring time should of course be short enough.

Fig. 7-13 Autosync or external arming makes it possible to measure the first tone in the burst.

To measure the frequency of the second half requires the use of arming delay. The delay time should be set to a value slightly longer than the duration of the first tone in the two-tone burst. See Figure 7-14.

Fig. 7-14 Add a delay to the external arming, and the second tone can be measured.

Example \#3

Profiling

Profiling means measuring frequency versus time. Examples are measuring warm up drift in signal sources over hours, measuring the linearity of a frequency sweep during seconds, VCO switching characteristics during milliseconds, or the frequency changes inside a "chirp radar" pulse during microseconds. The counter can handle many profiling measurement situations. Profiling can theoretically be done manually, i.e., by reading individual measurement results and plotting in a graph. However, to avoid getting bored long before reaching your 800th or so measurement result, you must use some computing power and a counter with GPIB interface. In profiling applications, the counter acts as a fast, high resolution sampling front end, storing results in its internal memory. These results are later transferred to the controller for analysis and graphical presentation.

You must distinguish between two different types of measurement called free-running and repetitive sampling.

Free-Running Measurements

Free-running measurements are performed over a longer period, e.g. to measure the stability over 24 hours of oscillators, to measure initial drift of a generator during a 30 -minute warm-up time, or to measure short-term stability during 1 or 10 s . In these cases, measurements are performed at intervals from half a millisecond and upwards. In other words, the maximum sampling rate is 1.6 kHz . There are several different ways of performing the measurements at regular intervals.

Single-Cycle Measurements Using Measuring Time Setting for "Pacing"

When SINGLE measurements are set on the counter, the measuring time acts as a "measurement hold time". By setting the measuring time to 10 s for example, single-cycle measurements are automatically made at 10 s -intervals.

Using a Controller as "Pacer"

With fairly large intervals such as seconds between individual samples, the timer in the controller can be used for pacing the individual measurements.

Using External Arming Signals

External arming signals can also be used for "pacing." For example with an arming signal consisting of 10 Hz pulses, individual measurements are armed at 100 ms intervals.

Letting the Counter Run Free

When the counter is free-running, the shortest time between measurements is approximately 600μ s plus set measuring time. For example when a measuring time of 2 ms is set, the time between each sample is approximately 2.6 ms . You have to perform some special actions in search of that high speed, for instance blanking the display. This is described in Chapter 19 of the Programming Manual.

■ Repetitive Sampling Profiling

The measurement setup just described will not work when the profiling demands less than $600 \mu \mathrm{~s}$ intervals between samples.

How to Do a VCO Step Response Profiling

- with 100 samples during a time of 10 ms , i.e., 100 ms between samples.

This measurement scenario requires a repetitive input step signal, and you have to repeat your measurement 100 times, taking one sample per switch period. Each new sample should be delayed $100 \mu \mathrm{~s}$ with respect to the previous one.

A GPIB controller is well suited for this purpose, although it is possible but tedious to manually set and perform all 100 measurements.

The following are required to set up a measurement:

- A repetitive input signal (e.g., frequency output of VCO).
- An external SYNC signal (e.g., step voltage input to VCO).
- Use of arming delayed by a preset time (e.g., 100, 200, $300 \mu \mathrm{~s}$).

See Figures 7-15 and 7-16.

7-15 Setup for transient profiling of a VCO.

When all 100 measurements have been made, the results can be used to plot frequency versus time. Note that the absolute accuracy of the time scale is dependent on the input signal itself. Although the measurements are armed at $100 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$ intervals, the actual start of measurement is always synchronized to the first input signal trigger event after arming.

Fig. 7-16 Results from a transient profiling measurement.

Chapter 8

Processing

Introduction

Two different ways to process a measurement result are available: Averaging and Nulling.

Averaging

SINGLE

If SINGLE is switched off, the counter makes a multiple period average. That means that it averages all data captured during the set measuring time and displays the result.

Nulling

NULL One press on the NULL key stores the current displayed result, then shows all the following results as deviation from that result.

It can be difficult to freeze the display in exactly the right moment when all ten digits show the desired value. Don't worry, you can display and change the null value by entering the AUX MENU.

To show the stored nulling value:

- Press AUX MENU, select NULL with the FUNCTION key and press ENTER.
To change the value:
- Press the $\langle\mathbf{S E N S} \boldsymbol{k}$ keys to select the digit you want to change and press the DATA ENTRY $\boldsymbol{\nabla}$ keys to change the value.
- Press ENTER, and the new value is stored.

- Manually Entering a Null Value

When nulling is off:

- Press the AUX MENU key.
- Select NULL with the FUNCTION key.
- Press ENTER and the display shows the previous Null value (if any).
- To use the shown value, press ENTER.
- To change the value, press the
<SENS $>$ keys to select the digit you want to change, and increase/decrease the digit with the DATA ENTRY $\boldsymbol{\Delta}$ keys. Repeat these steps for all digits you want to change, then exit the AUX MENU by pressing ENTER.
The NULL annunciator on the display is switched on and the display shows the deviation from the entered value.

This page is intentionally left blank.

Chapter 9

Auxiliary Functions

About This Chapter

This chapter describes less commonly used functions that are "hidden" in the auxiliary menu.

Auxiliary Menu

Introduction

All the counter's measuring logic and input settings are computer controlled. The ability to select, combine, and add new functions is limited only by the number of controls on the front panel.

To keep the normal operation of the counter as simple as possible, the use of dual or triple function keys has been avoided. For the same reason the number of keys has been restricted, however, the counter contains many "hidden" features. The AUX MENU key gives you access to all the extras that are not generally found in a traditional counter.

If you frequently need to use some AUX MENU functions, we recommend that you save your favorite complete front panel setup in one of the 20 memory locations for easy recall later.

You can use such preprogrammed settings as default settings for your particular applications, from which you can manually modify the various individual control settings.

When you select something in the AUX MENU, that cannot otherwise be indicated, an AUX annunciator on the display is switched on.

The AUX annunciator only shows that a change has been made in the AUX MENU. The unique settings that have been made are not shown on the display.

Fig. 9-1 You will enter the AUX MENU at the same selection as you used the previous time, except after power on. Then you enter the menu at RECALL.

Plain English AUX MENU Commands

AUX The selection of functions MENU

FUNCTION the FUNCTION key until you find the function you are looking for．Pressing ENTER will select the func－
ENTER tion or take you to a submenu with more selec－ tions．

The texts on the display are messages in abbre－ viated English．However，the ability to express oneself using ten， 7 －segment indicators is somewhat limited．Here is a list of all display messages with explanations．

RnPle al iut

Analog output ON／OFF and scaling factor
Rr．StRrt
Arming Start
Rr．Stap
Arming Stop
birst
Burst Frequency
bis i．こコ
Identity of the GPIB firmware
d．5P．L IGht
Display light
d 5P．AFL．
Display overflow
Err．ProtEc
You tried to save a front panel setting while the memory was protected

吅 化 Rddr

GPIB Address Read／Set

```
inStrr. i. ב3
```

Identity of the Instrument firmware

TE 9

Negative

no bu＇s

No GPIB interface is installed

niti

Null
IFF
Off
On
On
PG5
Positive
PrF
PRF Pulse Repetition Frequency
Prol．idn．
Program Identity
ProtEct
Memory Protect Menu
rEcRLL
Recall from memory position 1 to 20

5Rut

Save in memory position 1 to 20

Sync．duy．

Synchronization delay
tE5t
Enter the test submenu

tESE RHL

All tests in sequence

tE5t 85 II

Test of measurement logic

tE5t diSP

Display test
tE5t rR.
Internal RAM test

tESt rit

Internal ROM test

t. But

Timeout menu

```
trg SigPE
```

Trigger slope

Recall

Recalls one of the 20 previously stored front panel settings. Press AUX MENU, select RECALL and press ENTER, then select one memory location from 0 to 19 , with the DATA ENTRY keys and confirm by pressing ENTER.

The memory annunciator is on as long as the recalled setting remains unchanged.

If the memory annunciator is on when you turn off the counter, it will recall that memory automatically when the counter is turned on again.

Save

Saves the current front panel setting in one of the 20 front panel memory locations. Press AUX MENU, select SAVE and press ENTER, then use the DATA ENTRY keys to select an unused memory location between 0 and 19. Confirm by pressing ENTER.

The MEMORY annunciator is
 only on as long as no changes of the saved setting have been made.

Memory Protect

Protects memory 10-19 from accidental overwrite, just like the write-protect tab on a diskette.

Trig Slope

Selects what slope the counter should trigger on. The default trigger slope is positive. Changing to negative trigger slope enables you to measure negative pulse width and duty factor.

Changing slope normally makes no sense in frequency, period or ratio measurements.

Arming Start

Selects if the counter should free-run, or if a separate signal must arm the start of each measurement. Press AUX MENU, select AR.START, press ENTER, select POS, NEG or OFF, and press ENTER. If you select POS or NEG, the display shows DELAY OFF. Select $\mathbf{O N}$ and you can enter a delay from the arrival of the arm start signal to the actual start of a measurement. Press ENTER to exit the menu.

Arming Stop

Selects if the counter should stop measuring when the measuring time expires, or if a separate signal must arm the stop of each measurement. Press AUX MENU, select AR.STOP, and press ENTER. Select POS, NEG or OFF and press ENTER.

Burst Frequency

Turns the burst frequency function on or off and selects measuring input. Read the explanation of this function in Chapter 6 "Measuring Functions".

PRF

Turns the burst PRF function on or off and selects measuring input. Read the explanation of this function in Chapter 6 "Measuring Functions".

Program Identity

Shows the firmware version of the instrument and the GPIB interface.

Test

In the Test menu, you can choose to run tests used in the power-up test one at a time:

- Select the test submenu by pressing the FUNCTION key until the display shows TEST.
- Enter the test menu by pressing the ENTER key.
Selections for internal self-tests are as follows:
- TEST ALL (the four tests below in sequence)
- TEST DISP (Display Test)
- TEST Logic (Measuring Logic)
- TEST RA (RAM)
- TEST RO (ROM)

If any fault is detected, an error message will appear on the display and the program halts. Possible error messages are as follows:

- Internal ROM test failed.
- Internal RAM test failed. The hex-address where an error is detected is shown.
- Test of measuring logic failed.

The display test turns on all segments of the display for a visual inspection. No failure is reported. Press ENTER to end the test.

If an error message is displayed, press any key to make the instrument continue even though an
error was detected. Contact your Local Service Center for repair.

Time-out

Turns the time-out on and off for measurements. Use the DATA ENTRY keys to change. If you select ON, you enter a submenu where you can set the value of the timeout. Time-out is a programmable stop for a measurement in progress. The time-out starts when the counter starts a measurement, and it interrupts the measurement if a result is not ready within the time-out period.

The range is 100 ms to 25.5 s . Preset time-out is OFF.

The time-out is mainly used for GPIB applications.

GPIB Address

Shows and changes the GPIB address. The new address is stored in non-volatile memory and remains until changed again via this
 menu, the address switches on the rear panel or via a bus command.

This means that the address of the counter can differ from the address indicated by the switches on the rear panel.

The last set address is the valid address whether it is set via the aux menu, the address switches or a GPIB command.

The counter shows the used address during the power-up test.

Analog Output (GPIB option only)

The default mode of the analog output is OFF. You turn it ON/OFF and set the scaling factor under ANALOG OUT in the AUX MENU.

Fig. 9-2 The analog output function.

■ Scaling Factor

The scaling factor has two functions:

- The exponent selects the display digits to be represented by the analog output.
- The significant figures set the reading to represent full scale.
The default scaling factor is 1 (1E0). This means that the full scale value is 0.999 , and the analog output converts the fraction (digits to the right of the decimal point) to a voltage.

The scaling factor should be:
Scaling factor $=\frac{1}{\text { full scale value }}$
where full scale value is the value for which you
want the analog output to assume its maximum voltage (5 V).

Example:

- Take a measurement result, for instance: $12.34567890 \mathrm{E}+6 \mathrm{~Hz}$
- Write the value without exponent: 12345678.90 Hz
- Multiply this value by the scaling factor, for instance 0.001 . 12345.67890
- Take the fractional part of the result: .67890
- This is the value that will determine the output voltage, .00 will give 0 V and .99 will give 5 V . this means that "our" reading will give $.67890 * 5=3.3945 \mathrm{~V}$.
This is output as 3.38 V due to the 0.02 V resolution of the analog output.

Default scaling factor $=1$
12.34567890^{6}
Same exponent, opposite sign Scaling factor $=1$ E- 6
12.34567890^{6}

Fig. 9-3 To use the shown decimal point as reference; set the exponent of the scaling factor to the same value as the exponent of the measurement result but with opposite sign.

Resolution

The analog output range is 0 to 5 V in 250 steps, so one step is 0.02 V . If the scaling factor is 1 , one such step is taken each time the display changes with X.004, and if the scaling factor is 4, one step is taken each time the display changes with X. 001 .

The X in the above paragraph can be any digit and does not influence the output voltage. If the display changes from 0.996 to 1.000 , the voltage drops from 4.98 V to 0 V . If the display value increases further, the output voltage starts to increase again, see Figure 94.

Fig. 9-4 Output voltage versus displayed value for two different scaling factors.

Display Overflow

Display overflow makes 12-digit measurements possible. When OVERFLOW is on and the measurement justifies 11 or 12 digits, the OVERFLOW annunciator turns on, and the counter truncates one or two MSDs and shows one or two extra LSDs instead.

You have to keep track of the decimal point yourself, compare the values with overflow ON and OFF to see if one or two overflow digits are shown when the OVERFLOW annunciator is ON.

Using OVERFLOW with Display Hold

When DISPLAY HOLD is active, The ENTER key toggles OVERFLOW on/off. If the counter has measured a result with more than 10 digits and you press ENTER, the OVERFLOW annunciator will switch on and the display will show the additional digits. The counter is designed this way because switching on OVERFLOW in the AUX MENU will initiate a new measurement. This is undesirable if you want to study single shot phenomena or long-term totalizing.
When totalizing, the result can be up to 10^{14}, that is 14 digits, but overflow will not show more than 12 digits.

Null

The null function stores the result currently displayed, then shows all the following results as deviations from that result.

You store the current display reading by pressing the NULL key on the front panel. You can read and change the stored result in the AUX MENU.

When NULL is ON:

- Press AUX MENU

- Select NULL with the FUNCTION key.
- Press ENTER and the display will show the stored value.

Change the value in 1-2-5 steps with the DATA ENTRY keys, or select what digit you want to change with the SENS keys and change it with the DATA ENTRY keys.

- When the display shows the desired value, press ENTER.
As default the null value is negative and subtracted from the new readings, but you can also enter a positive null value.

Turn off the nulling by pressing NULL again.

If you want to turn on nulling without storing the currently displayed value but keep the old one, press AUX MENU, select NULL and press ENTER twice.

Display Light

You can turn the display backlight ON or OFF:

- Press AUX MENU.
- Select DISP LIGHT with the FUNCTION key.
- Press ENTER.
- Select ON or OFF with the DATA ENTRY keys
- Press ENTER again to exit the aux menu.

This page is intentionally left blank.

Chapter 10

Performance Check

General
 Information

WARNING: Before turning on the in-
strument, ensure that it has been
installed in accordance with the in-
stallation instructions outlined in
Chapter 3 of this manual.

This performance procedure is intended to do the following:

- Check the instrument's specification.
- Be used for incoming inspection to determine the acceptability of newly purchased instruments and recently recalibrated instruments.
- Check the necessity of recalibration after the specified recalibration intervals. The procedure does not check every facet of the instrument's calibration; rather, it is concerned primarily with those parts of the instrument which are essential for determining the function of the instrument.

It is not necessary to remove the cover of the instrument to perform this procedure.

If the test is started less than 30 minutes after turning on the instrument, results may be out of specification, due to insufficient warm-up time.

Recommended
 Test Equipment

Type of instrument	Required Specifications	Suggested Instrument
LF Synthesizer	Square; Sine up to 10 MHz	
Power Splitter	50Ω	PM9584/02
T-piece		
Termination	50Ω	PM9585
Reference oscillator	$\begin{aligned} & 10 \mathrm{MHz} \\ & \pm 0.1 \mathrm{~Hz} \text { for } \\ & \text { standard oscil- } \\ & \text { lator } \end{aligned}$	Fluke 908, or a counter with calibrated PM9691
	10 MHz $\pm 0.01 \mathrm{~Hz}$ for PM9691 and PM9692.	Fluke 909, 910R, PM6685R or PM6681R
	$\begin{aligned} & 10 \mathrm{MHz} \\ & \pm 0.0001 \mathrm{~Hz} \\ & \text { for PM6685R. } \end{aligned}$	Fluke 910R or Cesium Standard
HF signal generator	500 MHz (no prescaler option) 1.5 GHz (option PM9621) 3.3 GHz (option PM9624)	
Pulse Generator	125 MHz	
Oscilloscope	350 MHz	

Table 10-1 Recomm. Test Equipment
*) Two of the cables must have 10 ns difference in delay, for example: 5 ns and 15 ns .

Preparations

Power up your instruments at least 30 minutes before beginning the performance check to let them reach normal operating temperature. Failure to do so may result in certain test steps not meeting equipment specifications.

Front Panel Controls

Power-On Test

At power-on the counter performs an automatic self-test of the following:

- Microprocessor
- RAM
- ROM
- Measuring circuits
- Display

If a GPIB interface is installed, the GPIB address is displayed.

If there are any test failures, an error message is shown.

- Turn on your counter and check that all segments light up on the display and that no error message appears.

Internal Self-Tests

The built-in test programs from the power-on test can also be activated from the front panel as follows:

- Enter the Auxiliary Menu by pressing AUX MENU.
- Select the test submenu by pressing DATA ENTRY \mathbf{A} or $\boldsymbol{\nabla}$.
- Enter the test menu by pressing the ENTER key.
Selections for internal self-tests are as follows:
- 1 TEST RO (ROM)
- 2 TEST RA (RAM)
- 3 TEST ASIC (Measuring Logic)
- 4 TEST DISP (Display Test)
- 5 TEST ALL (Test 1 to 4 in sequence)
- Use DATA ENTRY $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to select TEST ALL, then press ENTER.
- If any fault is detected, an error message appears on the display and the program halts.
- If no faults are detected, the program returns to measuring mode.

Fig. 10-1 Text on the display.

Keyboard Test

The keyboard test verifies that the counter responds when you press any key. To check the function behind the keys, see the tests further on in this chapter.

Press the keys as described in the left column and look on the display for the text, as described in the second column. Some keys change more text on the display than described here. The display text mentioned here is the text mostly associated with the selected key.

For the instrument to respond correctly, this test must be carried out in sequence, and you must start with the preset (power-up) setting.

KEY(S)	DISPLAY	NOTE	Pass IFail
STANDBY	Display OFF	Red LED beside the key ON	
ON	Backlight ON	Selftest	
PRESET ENTER	DEFAULT? NO SIGNAL	Default setting	
EXT REF	EXT REF		
Input A			
FILTER	FILTER		
50Ω	50Ω		
TRGLVL	SENSITIVITY A	NO TRIG	
TRGLVL	\square		
<SENS (2 times)	Bar graph: 		
SENS (2 times)	Bar graph: ॥ППППППП		
Others			
PRESET ENTER	DEFAULT? NO SIGNAL	Default setting	
MEAS TIME	$200.0^{-3} \mathrm{~s}$		
DATA ENTRY	$500.0^{-3} \mathrm{~s}$		

DATA ENTRY	$200.0^{-3} \mathrm{~s}$		
ENTER	NO SIGNAL		
$\begin{aligned} & \text { MEASURE } \\ & \text { HOLD } \end{aligned}$	HOLD		
MEASURE RESTART	--		
$\begin{aligned} & \text { MEASURE } \\ & \text { HOLD } \\ & \hline \end{aligned}$	NO SIGNAL		
SINGLE	SINGLE	----------	
4FUNCTION	DUTY F A		
4 FUNCTION	TOT A MAN	0	
FUNCTION>	DUTY F A	-----	
FUNCTION>	FREQ A		
AUX MENU	RECALL		
PRESET ENTER	DEFAULT? NO SIGNAL	Default setting	
NULL	NULL		
NULL	NO SIGNAL		
CHECK	$\begin{aligned} & 10.00000000^{6} \\ & \mathrm{~Hz} \text { * } \end{aligned}$	Start counting	
BLANK (3 times)	$\begin{aligned} & 10.00000_{---}^{6} \\ & \mathrm{~Hz}^{*} \end{aligned}$		
MENU	Displays all av functions, proc input controls. items are blink	lable sses and elected g.	
PRESET ENTER	DEFAULT? NO SIGNAL **	Default setting	

Table 10-2 Keyboard test.

* The LSD digit may vary.
** MENU is not disabled by setting DEFAULT; press menu again.

Short Form Specification Test

Sensitivity and Frequency Range

- Press the PRESET key to activate the default setting mode ($\boldsymbol{d} E F F H L_{1} \in \boldsymbol{Z}$). Then confirm by pressing ENTER.
- Turn off AUTO by pressing the TRGLVL button to the left of AUTO.
- Select 50Ω.
- Select maximum sensitivity by keeping the 4SENS button depressed until only one bar in the bar graph is ON.
- Connect the output from an HF generator to a BNC power splitter.
- Connect the power splitter to your counter and an oscilloscope.
- Set input impedance to 50Ω on the oscilloscope.
- Adjust the amplitude according to the following table. Read the level on the oscilloscope. The Counter should display the correct frequency.

Freq	Level			Pass/ Fail
$\mathbf{M H z}$	$\mathbf{m V}_{\text {PP }}$	$\mathbf{m V}$ RMS	$\mathbf{d B m}$	Input \mathbf{A}
1	30	10	-27	
50	30	10	-27	
100	45	15	-23	
150	60	20	-21	
200	90	30	-17	
300	150	50	-13	

Table 10-3 Sensitivity for input A at various frequencies

Reference Oscillators

Crystal oscillators are affected by a number of external conditions such as ambient temperature and supply voltage but also by aging. Therefore, it is hard to give limits for the allowed frequency deviation. You must decide the limits depending on your application, and recalibrate the oscillator accordingly. See Chapter 11 Preventive Maintenance.

Oscillator	Max. tem- perature depen- dence (Hz)	Max. ag- ing per month $(H z)$	Max. ag- ing per year
$\mathbf{(H z)}$			
Standard	± 100	± 5	± 50
PM9691	± 0.05	± 0.1	± 0.75
PM9692	± 0.025	± 0.03	± 0.2
Rubidium	± 0.003	± 0.0005	± 0.002

Table 10-4 Deviation (for PM9691 and PM9692 after 48 hours warm-up time).

To check the accuracy of the oscillator, you must have a calibrated reference signal that is at least five times as stable as the oscillator that you are testing. See the following table.

- Set the counter to default settings by pressing PRESET and ENTER.
- Connect the reference to input A
- Check the read-out against the accuracy requirements of your application.

■ Acceptance Test

As an acceptance test the following table gives a worst case readout figure after 30 minutes warm-up time. All deviations that can occur in a year are added together.

Oscilla- tor	Frequency read-out	Suitable reference	Pass $/$ Fail
Standard	10.00000000^{6} $\pm 120 \mathrm{~Hz}$	PM9691 or PM9692	
PM9691	10.00000000^{6} $\pm 1 \mathrm{~Hz}$	909, PM6685R or	
PM9692	10.00000000^{6} $\pm 0.25 \mathrm{~Hz}$	PM6681R	

Table 10-5 Acceptance test for oscillators

■ Acceptance Test, PM6685R

To fully test the accuracy of the PM6685R, an extremely high stability reference signal is needed. Examples of such references are Cesium Atomic references, or transmitted signals from a nationally or internationally traceable source.

Recommended Test Equipment

Type	Stability	Model
10 MHz reference	$\leq 1 \times 10^{-10}$	Fluke 910R with satel- lite contact during the last 72 hours.

Test Procedure

- Connect the counter to the line power.
- Check that the UNLOCK indicator turns on, and then turns off again within 6 minutes after connecting line power.
- Connect the 10 MHz reference signal to input A of the counter.
- Select FREQUENCY A measurement.
- Select 2 s measuring time.
- Check that the displayed frequency is $10.00000000 \mathrm{MHz} \pm 0.05 \mathrm{~Hz} \leq 10$ minutes after connection to line power.

Rear Input/Output

INT REF Output

- Connect an oscilloscope to the 10 MHz output on the rear of the counter. Use coaxial cable and 50Ω termination.
- Check that the output voltage is sinusoidal and that the amplitude is minimum 1.4 V_{pp}.

EXT REF Input

- Set the counter to Default Setting by pressing PRESET and ENTER.
- Apply a 10 MHz sine wave signal to input A equipped with a T-piece and to the REF IN connector at the rear, terminated with 50Ω. Amplitude of 10 MHz signal: 200 mV RMS, $\left(0.6 \mathrm{~V}_{\mathrm{pp}}\right.$)
- Press the EXT REF key.
- The display should show $10.00000000^{6} \mathrm{~Hz} \pm 5$ LSD.

EXT ARM INPUT

- Press the PRESET key, and confirm by pressing the ENTER key to recall the default setting.
- Select 50Ω input impedance.
- Apply $10 \mathrm{MHz}, 500 \mathrm{mV}$ RMS $\left(1.4 \mathrm{~V}_{\mathrm{pp}}\right)$ sine wave to input A
- The counter measures and displays 10 MHz .
- Press AUX MENU key.
- Press DATA ENTRY $\boldsymbol{A} \boldsymbol{\nabla}$ keys until display shows $\boldsymbol{R} \boldsymbol{r}$. $\quad 5 \in \boldsymbol{R} \boldsymbol{r} \boldsymbol{L}$, confirm by pressing the ENTER key.
- Press DATA ENTRY $\boldsymbol{A} \boldsymbol{\nabla}$ keys until display shows P IS, confirm by pressing the ENTER key.
- Press ENTER once more.
- The counter does not measure.
- Connect a pulse generator to input EXT ARM.
- Settings for pulse generator:
- single shot pulse
- TTL levels (0 and +2 V)
- 10 ns duration
- Apply one single shot pulse to input EXT ARM .
- The counter measures once and shows 10 MHz on the display.

Measuring
 Functions

Preparation for Check of Measuring Function is as follows:

- Connect a 10 MHz sine wave signal with $3.0 \mathrm{~V}_{\mathrm{pp}}$ amplitude via a T-piece to Input A.
- Connect a cable from the T-piece to Input E (EXT ARM).
- Select the measuring functions in the 'Selected Function' column successively and check that the counter performs the correct measurement by displaying the result as shown under the "Display" column in the following table.

Selected Function	Display	Pass/ Fail
PRESET ENTER	DEFAULT? $10 \mathrm{MHz}^{2}$)	
50Ω Input A	$10 \mathrm{MHz}{ }^{2)}$	
Non AUTO	$10 \mathrm{MHz}^{2)}$	
PER A	$100 \mathrm{~ns}^{2)}$	
RATIO A/E	1.0000000	
PWIDTH A	$50 \mathrm{~ns}{ }^{1)}$	
TOT A MAN DISPLAY HOLD	Start counting	
DISPLAY HOLD	Stop counting	
DUTY FACT	$0.500000^{1)}$	
AUTO	$0.500000^{1)}$	

Table 10-6 Measuring functions check 1) Value depends on the symmetry of the signal 2) Exact value depends on input signal.

PM9621, PM9624

Prescaler Check

To verify the specification of the HF input in the instrument:

- If your counter does not have an Input C connector, skip this test.
- Connect the output of the signal generator to the HF-input of the counter.

Required Test Equip- ment	Suggested instrument
HF signal generator	Wiltron 6717B-20

Table 10-7 Test equipment

Connect the 10 MHz REF OUT of the generator to the REF IN at the rear panel of the counter.

Fig 10-2 Connection.

- Preset the counter.
- Set Function to FREQ C.
- Select EXT REF.
- Generate a sine wave in accordance with the corresponding tables below.

Frequency	Amplitude		Pass
$\mathbf{M H z}$	$\mathbf{m V}_{\text {RMs }}$	$\mathbf{d B m}$	
$70-90$	10	-23	
$900-1100$	15	-23	
$1100-1300$	40	-15	

Table 10-8 Sensitivity of PM9621.

Frequency	Amplitude		Pass
$\mathbf{M H z}$	$\mathbf{m V}_{\text {RMS }}$	$\mathbf{d B m}$	
$100-300$	20	-21	
$300-2500$	10	-27	
$2500-2700$	20	-21	
$2700-3000$	100	-7	

Table 10-9 Sensitivity of PM9624

PM9623

Battery Unit Check

- Charge the battery for 24 hours.
- Make sure the capacity of the battery is sufficient to drive the counter for 2 hours with the backlight switched on.

Chapter 11

Preventive Maintenance

Calibration and Adjustment

To maintain the performance of the frequency counter, we recommend that you calibrate the timebase of your instrument every year, or more often if you require greater timebase accuracy. Calibration should be performed with traceable references and instruments at a certified calibration laboratory. Contact your local service center for calibration.

To know the present status of your instrument, test your counter from time to time. The test can be made according to the information in Chapter 10, "Performance Check."

Oscillators

The frequency of the reference crystal oscillator is the main parameter that influences accuracy of a counter. External conditions, such as ambient temperature and supply voltage, influence the frequency, but aging is also an important factor. Remember that adjustment can only compensate the reference oscillator for frequency deviation due to aging.

- Some Important Points:

- The high-stability oscillators, PM9691 and PM9692, have been built into an oven to keep the oscillator temperature as stable as possible. Continuous operation is also important for optimum stability. For example, the PM9692 has an aging/24h that is 3×10^{-10} when operating continuously. After a power interruption, the oscillator drift is higher, and the specification of 3×10^{-10} per 24 h is not reached until after 48 h of continuous operation.
- The frequency uncertainty for standard oscillators is mainly dependent on the ambient temperature. Variations in ambient
temperature between 0 and 50 degrees may cause a frequency change of up to 100 Hz , whereas the aging per month is only 5 Hz . There is always a temperature increase inside the counter, during the first 30 minutes of operation, that will influence the oscillator.

How often should you calibrate?

In the table below you can see the uncertainty of your timebase oscillator for various MTBRC (Mean Time Between Recalibration) intervals.

Compare the requirements of your application with the values in the table, and select the proper MTBRC accordingly.

Please note that the frequency uncertainty when operating in a temperature-controlled environment is different from field use. See the two sections in the table.

■ Stability of Timebase Oscillators:

Model	PM6685			PM6685R
Option: Timebase type:	Standard UCXO	$\begin{gathered} \text { PM9691 } \\ \text { OCXO } \end{gathered}$	$\begin{gathered} \text { PM9692 } \\ \text { OCXO } \end{gathered}$	Rubidium
Total uncertainty, for operating temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: - 1 month after calibration - 3 month after calibration - 1 year after calibration - 2 year after calibration	$\begin{aligned} & <1.2 \times 10^{-5} \\ & <1.2 \times 10^{-5} \\ & <1.2 \times 10^{-5} \\ & <1.5 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-8} \\ & <4 \times 10^{-8} \\ & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <8 \times 10^{-9} \\ & <1.2 \times 10^{-8} \\ & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <4 \times 10^{-10} \\ & <4 \times 10^{-10} \\ & <4 \times 10^{-10^{*}} \\ & <6 \times 10^{-10} * \end{aligned}$
Typical total uncertainty, for operating temperature $20^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: - 1 month after calibration - 3 months after calibration - 1 year after calibration - 2 years after calibration	$\begin{aligned} & <4 \times 10^{-6} \\ & <4 \times 10^{-6} \\ & <7 \times 10^{-6} \\ & <1.2 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-8} \\ & <4 \times 10^{-8} \\ & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <8 \times 10^{-9} \\ & <1.2 \times 10^{-5} \\ & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-10} \\ & <2 \times 10^{-10} \\ & <2.5 \times 10^{-10^{*}} \\ & <5 \times 10^{-10 *} \end{aligned}$

* After $1^{\text {st }}$ year of operation. For $1^{\text {st }}$ year add: $<3 \times 10^{-10}$

For complete specifications see Chapter 12, Specifications.

Other Maintenance

Fan Replacement

The PM6685R is equipped with a fan, and if it is operating in a $24 \mathrm{~h} /$ day system, you need to replace the fan every second year to maintain high reliability. For part-time applications and low ambient temperatures, an extended service interval is acceptable.

Optional Battery-Pack Replacement

The PM9623 rechargeable battery kit contains two sealed lead-acid batteries. These batteries are similar to ordinary automotive starter batteries, but they are made maintenance free by using a gel instead of liquid acid.

The performance of this kind of batteries decreases with time, and high ambient temperatures accelerate this performance decrease.

We recommend that you run the capacity test in the performance check chapter once a year to ensure correct battery operating time. If your counter is used in a hot environment, run this test more often.

When the counter no longer passes the test, the batteries must be replaced.

Examples of suitable batteries:
Hitachi HP3-6
Sonnenschein A206/3.2S
Contact your local Service Organization to replace the battery.

Chapter 12

Specifications

Measuring
 Functions

Refer to table 1 for measurement uncertainty information.

Frequency A, C

Range

Input A: $\quad 10 \mathrm{~Hz}$ to 300 MHz
Prescaling factor: 4
Input C: $\quad 70 \mathrm{MHz}$ to 1.3 GHz (PM9621)
Prescaling factor: 512
100 MHz to 3.0 GHz (PM9624)
Prescaling factor: 64
Resolution: 10 digits/s measurement time

Burst Frequency A

Frequency Range: 100 Hz to 80 MHz Prescaling factor: 1
PRF Range: $\quad 1 \mathrm{~Hz}$ to 1 MHz
Burst Duration: $\quad 0.8 \mu \mathrm{~s}$ to 50 ms , min. 3 periods of this signal

Period A

Average

Range:
3.3 ns to 100 ms

Prescaling factor: 4
(if possible to easily differentiate between single and average, otherwise see specifications for single)

Resolution: 10 digits/s measurement time

Single

Range: $\quad 12 \mathrm{~ns}$ to 100 ms Prescaling factor: 1
Resolution: 10 digits/s measurement time

Ratio A/E, C/A

Range: $\quad 10^{-9}$ to 10^{9}

Frequency

Range

Input A: $\quad 10 \mathrm{~Hz}$ to 300 MHz Prescaling factor: 4
Input E: $\quad 10 \mathrm{~Hz}$ to 80 MHz Prescaling factor: 1
Input C: $\quad 70 \mathrm{MHz}$ to 1.3 GHz (PM9621) Prescaling factor: 512 100 MHz to 3.0 GHz (PM9624) Prescaling factor: 64
Note: \quad The higher frequency should be on the first-mentioned input, i.e. input A or C.

Pulse Width A

Range: $\quad 6$ ns to 10 ms
Frequency Range: 50 Hz to 60 MHz
Prescaling factor: 1
Voltage Range: $\quad 100 \mathrm{mV}$ pp to $70 \mathrm{~V}_{\mathrm{pp}}$

Duty Factor A

Range: $\quad 0$ to 1
Frequency Range: 50 Hz to 60 MHz
Prescaling factor: 1
Voltage Range: $\quad 100 \mathrm{mV}$ pp to $70 \mathrm{~V}_{\mathrm{pp}}$

Totalize A

Event counting on input A with manual start and stop.
$\begin{array}{ll}\text { Range: } & 0 \text { to } 10^{14} \\ \text { Frequency Range: } & 0 \text { to } 100 \mathrm{MHz}\end{array}$

Input and Output Specifications

Input A

Frequency
Range:
10 Hz to 300 MHz
Coupling: AC
Impedance: $1 \mathrm{M} \Omega / / 25 \mathrm{pF}$ or 50Ω, VSWR 2:1
Connector: BNC
Sensitivity:
Sinewave: $10 \mathrm{mV}_{\mathrm{rms}}, 10 \mathrm{~Hz}$ to 50 MHz 15 mV rms, 50 MHz to 100 MHz 20 mV rms, 100 MHz to 150 MHz 30 mV rms, 150 MHz to 200 MHz 50 mV rms, 200 MHz to 300 MHz

Pulse: $\quad 50 \mathrm{mV} \mathrm{pp}, 3 \mathrm{~ns}$ minimum pulse width

Dynamic Range: 30 mV pp to $70 \mathrm{~V}_{\mathrm{pp}}$
Manual Trigger:
Sens.
Range: $\quad 10 \mathrm{mV}_{\text {rms }}$ to $10 \mathrm{~V}_{\mathrm{rms}}$, variable in 3 dB steps, indicated on a bar graph.
Trigger
Level: Selectable for optimum triggering on waveforms with duty factors $<0.25,0.25$ to 0.75 and >0.75
Trigger Positive or negative
Slope:

Auto Trigger:

Automatic setting of input signal conditioning circuits for optimum triggering on different amplitudes and waveforms.

Frequency: Minimum 50 Hz
Sensitivity Range: $10 \mathrm{mV}_{\mathrm{rms}}$ to $25 \mathrm{~V}_{\mathrm{rms}}$
Signal Monitor:
A bar graph displays actual input signal level in 3 dB steps, 10 mV rms to $10 \mathrm{~V}_{\text {rms }}$
Low Pass Filter:
100 kHz nominal 3 dB point. Minimum 40 dB attenuation at 1 MHz .

Damage Level:
1MS: $\quad 350 \mathrm{~V}$ (dc + ac peak) at dc to 440 Hz , falling to $12 \mathrm{~V}_{\mathrm{rms}}$ at 1 MHz and above
$50 \Omega: \quad 12 \mathrm{~V}_{\mathrm{rms}}$

Input C (PM9621)

Frequency Range:	70 MHz to 1.3 GHz
Prescaling Factor:	512

Operating Input Voltage Range:

$$
\begin{array}{ll}
70 \text { to } 900 \mathrm{MHz}: & 10 \mathrm{mV} \mathrm{rms} \text { to } 12 \mathrm{~V}_{\mathrm{rms}} \\
900 \text { to } 1100 \mathrm{MHz}: & 15 \mathrm{mV} \mathrm{rms}_{\mathrm{rms}} \text { to } 12 \mathrm{~V}_{\mathrm{rms}} \\
1100 \text { to } 1300 \mathrm{MHz}: & 40 \mathrm{mV} \text { rms to } 12 \mathrm{~V}_{\mathrm{rms}}
\end{array}
$$

Amplitude Modulation:

$$
\begin{array}{ll}
\text { DC to } 0.1 \mathrm{MHz}: & \text { Up to } 94 \% \text { depth } \\
\text { O.1 to } 6 \mathrm{MHz}: & \text { Up to } 85 \% \text { depth }
\end{array}
$$

Minimum signal must exceed minimum operating input voltage.

Impedance:	50Ω nominal
Coupling:	AC
VSWR:	$<2: 1$
Max. Voltage	
Without Damage:	$12 \mathrm{~V}_{\text {rms }}$, pin-diode prot.
Connector:	BNC

Input C (PM9624)

Frequency Range: $\quad 100 \mathrm{MHz}$ to 3.0 GHz
Prescaling Factor: 64
Operating Input Voltage Range:

$$
\begin{array}{ll}
100 \text { to } 300 \mathrm{MHz}: & 20 \mathrm{mV}_{\mathrm{rms}} \text { to } 12 \mathrm{~V}_{\mathrm{rms}} \\
\text { 0.3 to } 2.5 \mathrm{GHz} \text { : } & 10 \mathrm{mV}_{\mathrm{rms}} \text { to } 12 \mathrm{~V}_{\mathrm{rms}} \\
\text { 2.5 to } 2.7 \mathrm{GHz} \text { : } & 20 \mathrm{mV}_{\mathrm{rms}} \text { to } 12 \mathrm{~V}_{\mathrm{rms}} \\
\text { 2.7 to } 3.0 \mathrm{GHz}: & 100 \mathrm{mV}_{\mathrm{rms}} \text { to } 12 \mathrm{~V}_{\mathrm{rms}}
\end{array}
$$

Amplitude Modulation: See PM9621 above

Impedance:	50Ω nominal
Coupling:	AC
VSWR:	$<2.5: 1$
Max. Voltage	
Without Damage:	$12 \mathrm{~V}_{\text {rms }}$, pin-diode prot.
Connector:	Type N Female

External Reference Input D

The use of external reference is indicated on the display.

Input Frequency:	10 MHz
Voltage Range:	$200 \mathrm{mV}_{\text {rms }}$ to $10 \mathrm{~V}_{\mathrm{rms}}$
Impedance:	Approx. $1 \mathrm{k} \Omega$
Coupling:	AC
Connector:	BNC

Input E

Used in Ratio A/E and external arming/gating modes.

Frequency Range:	DC to 80 MHz
Pulse Width:	6 ns minimum
Slew Rate:	$2 \mathrm{~V} / \mu$ s minimum
Trigger Level:	TTL level, 1.4 V nominal
Trigger Slope:	Positive or negative
Impedance:	Approx. $2 \mathrm{k} \Omega$
Coupling:	DC
Damage Level:	$\pm 25 \mathrm{~V}$ peak
Connector:	BNC

Reference Output G

Frequency:	10 MHz sine wave
Output Level:	$>1 \mathrm{~V}_{\text {rms into }} 50 \Omega$
Coupling:	AC
Connector:	BNC

Auxiliary Functions

External Arming/External Gate

An external signal on input E can be used to inhibit start and/or stop triggering.

Stop arming is not applicable to Pulse Width and Duty Factor measurement modes.

Start Arming Delay: OFF or 200 ns to 5 s in 100 ns steps

Nulling/Frequency Offset

Nulling enables measurements to be displayed relative to a previously measured value or any frequency offset value entered via front panel keys.

Other Functions

Measuring Time: Single cycle or 100 ns to 15 s , in 1-2-5 steps
Local/Preset: Go to local function in remote mode, or preset counter to default setting in local mode
Starts a new measurement Freezes measuring result. Start and stop of the totalization in TOT A MAN.

Analog output (included with GPIB option)

The analog output produces a voltage that is proportional to any selected group of three consecutive display digits.

Output Voltage: $\quad 0.00$ to 4.98 V in 20 mV steps
Output Impedance: 200Ω
Output Connector: BNC

Battery Unit

Option PM9623 (not for the PM6685R)

The PM9623 is a rechargeable battery unit for mounting inside the counter.

Battery	
Quantity:	2
Type:	$6 \mathrm{~V} / 3 \mathrm{Ah}$ sealed
Dimensions:	134*34*60 mm
Terminals:	4.8 mm flat spade
Battery Capacity$\text { (a) } 25^{\circ} \mathrm{C}$	
Standby Mode:	Typically 20 h with oven timebase
Operating Mode:	Typically 3 h without options, 2.5 h with oven timebase, 2 h with oven timebase and Input C option
Recharge time:	Typically 8 h in standby mode
Battery Protection:	Overcharge and deep discharge protection.
External DC:	12 to 24 V via socket on rear panel (16 to 24 V to charge internal battery)
Line Failure Prot.	Counter automatically switches to internal battery or external DC when the line voltage falls below $90 \mathrm{~V}_{\mathrm{rms}}$
Temperature	
Operating:	$0{ }^{\circ} \mathrm{C}$ to $+40{ }^{\circ} \mathrm{C}$
Storage:	$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Weight:	$1.5 \mathrm{~kg}(3.3 \mathrm{lb})$

Measurement Uncertainties

Measuring function	Random Uncertainty rms	Systematic Uncertainty	LSD Displayed
Frequency/ Period	$\pm \frac{\sqrt{E_{q}^{2}+2 \times(\text { Trigger Error })^{2}}}{\text { Measuring Time }} \times \text { Freq }(\text { Per })$	$\pm \text { Time Base Error } \times \text { Freq }(\text { Per })$	$\frac{250 \text { ps } \times \text { Freq }(\text { Per })}{\text { Measuring Time }}$
$\begin{gathered} \text { Ratio } \\ \mathbf{f}_{1} / \mathbf{f}_{2} \end{gathered}$	$\pm \frac{\sqrt{(\text { presc. factor })^{2}+2 \times\left(f_{1} \times \text { Trig.Err. of } f_{2}\right)^{2}}}{f_{2} \times \text { Meas. Time }}$		Prescaler Factor $f_{2} \times$ Meas. Time
Pulse Width (Auto Trigger)	$\pm \sqrt{E_{q}^{2}+(\text { Start TE })^{2}+(\text { Stop TE })^{2}}$	\pm Time Base Err.\times Pulse Width $\pm 0.5 \times$ Transition Time $\pm 1.5 \mathrm{~ns}$	100 ps
Duty Factor	$\pm \sqrt{E_{q}^{2}+(\text { Start TE })^{2}+(\text { Stop TE })^{2}} \times$ Freq.	$\pm(0.5 \times \text { TranisitionTime }+$	1×10^{-6}

Table 12-1 Measurement Uncertainties and LSD Displayed

- Random Uncertainty

Quantization Error E_{q} : 250 ps

■ Start/Stop Trigger Errors (TE)

$\sqrt{\left(V_{\text {noise-input }}\right)^{2}+\left(V_{\text {noise-signal }}\right)^{2}}$
Signal slewrate (V / s) at trigger point

$$
\begin{array}{ll}
\text { V } \text { noise-input: } & 250 \mu V_{\text {rms typical }} \\
V_{\text {noise-signal: }} & \text { The rms noise of the } \\
& \text { input signal over a } 300 \\
& \text { MHz bandwidth }
\end{array}
$$

Systematic Uncertainties

$$
\begin{array}{ll}
\text { Timebase Error: } & \begin{array}{l}
\text { See Table } 2 \text { "Timebase } \\
\text { Options" for total un- } \\
\text { certainty specifications }
\end{array}
\end{array}
$$

■ Display Resolution

LSD Displayed

Unit value of Least Significant Digit (LSD) displayed. After calculation, the LSD value is rounded to the nearest decade before display (for example 0.5 Hz will be 1 Hz and 0.4 Hz will be 0.1 Hz). LSD blanking is available to reduce displayed resolution. Measuring time 1s can give significance in 10 digits. The 11th and 12th digits can be displayed using the display overflow function.

Timebase Options

Product Family	PM6685 /PM6685R series			
Model:	PM6685	PM6685	PM6685	PM6685R
Option: Timebase type:	Standard UCXO	$\begin{gathered} \text { PM9691 } \\ \text { OCXO } \end{gathered}$	$\begin{gathered} \text { PM9692 } \\ \text { OCXO } \end{gathered}$	Rubidium
Uncertainty due to: - Cal. adjustment tolerance, at $+23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$<1 \times 10^{-6}$	$<2 \times 10^{-8}$	$<5 \times 10^{-9}$	$<5 \times 10^{-11}$
- Aging: per 24 hr . per month per year	$\begin{aligned} & \text { n.a. } \\ < & 5 \times 10^{-7} \\ < & 5 \times 10^{-6} \end{aligned}$	$\begin{gathered} <5 \times 10^{-101)} \\ <1 \times 10^{-8} \\ <7.5 \times 10^{-8} \end{gathered}$	$\begin{aligned} & \left.<1 \times 10^{-10} 4\right) \\ & <3 \times 10^{-9} \\ & <2 \times 10^{-8} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { not specified } \\ \left.<5 \times 10^{-11} 2\right) \\ <2 \times 10^{-103)} \\ \hline \end{array}$
- Temp. Variation: $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}-26^{\circ} \mathrm{C}$ (typ. values)	$\begin{aligned} & <1 \times 10^{-5} \\ & <3 \times 10^{-6} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & <6 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-9} \\ & <4 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \\ & <5 \times 10^{-11} \\ & \hline \end{aligned}$
- Power voltage variation: 10%	$<1 \times 10^{-8}$	$<5 \times 10^{-10}$	$<5 \times 10^{-10}$	$<1 \times 10^{-11}$
Short term stability : Typical values	not specified	$\begin{aligned} & <1 \times 10^{-11} \\ & <1 \times 10^{-11} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-11} \\ & <1.5 \times 10^{-11} \end{aligned}$
Power-on stability: - Deviation versus final value after 24 hr on time, after a warm-up time of:	not specified	$\begin{gathered} <1 \times 10^{-8} \\ 10 \mathrm{~min} \\ \hline \end{gathered}$	$\begin{gathered} <5 \times 10^{-9} \\ 10 \mathrm{~min} \\ \hline \end{gathered}$	$\begin{gathered} <4 \times 10^{-10} \\ 10 \mathrm{~min} \\ \hline \end{gathered}$
Time to lock at $25^{\circ} \mathrm{C}$ (PM6685R only):	n.a.	n.a.	n.a.	approx. 5 min .
Total uncertainty, for operating temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: - 1 year after calibration -2 years after calibration	$\begin{aligned} & <1.2 \times 10^{-5} \\ & <1.5 \times 10^{-5} \\ & \hline \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \\ & \hline \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <4 \times 10^{-103)} \\ & <6 \times 10^{-103)} \\ & \hline \end{aligned}$
Typical total uncertainty, for operating temp. $20^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$, at 2σ (95%) confidence interval: - 1 year after calibration - 2 years after calibration	$\begin{array}{r} <7 \times 10^{-6} \\ <1.2 \times 10^{-5} \end{array}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \\ & \hline \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \\ & \hline \end{aligned}$	$\begin{aligned} & \left.<2.5 \times 10^{-103}\right) \\ & <5 \times 10^{-103)} \end{aligned}$

1)after 48 hours of continuous operation.
2)after 1 month of continuous operation.
3)after $1^{\text {st }}$ year, aging during $1^{\text {st }}$ year: $<5 \times 10^{-10}$; long-term $<1 \times 10^{-9} / 10$ years
4)after 14 days of continuous operation.

Explanation

Calibration Adjustment Tolerance is the maxi-
mum tolerated deviation from the true 10 MHz frequency after a calibration. When the reference frequency does not exceed the tolerance limits at the moment of calibration, an adjustment is not needed.

OCXO = Oven Controlled X-tal Oscillator.
$\mathbf{U C X O}=$ Un-Compensated X-tal Oscillator.

General Specifications

■ Environmental Conditions

Temperature	
Operating:	$0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}$
Storage:	$-40{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

The temperature range is reduced when option PM9623 (Battery Unit) is installed. See separate specification for this unit.

Humidity: $\quad 95 \% \mathrm{RH}, 0^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
Altitude
Operating: \quad Up to $4600 \mathrm{~m}(15000 \mathrm{ft})$
Non-operating: Up to 12000 m (40000 ft)
Vibration: $\quad 3 \mathrm{G}$ at 55 Hz per
MIL-T-28800D, Class 3, Style D
Shock: Half-sine 40G per MIL-T-28800D, Class 3, Style D. Bench handling. Shipping container.
Reliability: MTBF 30000 hours
Safety: CSA 22.2 No. 1010-1, EN61010-1 (1997), Cat II, Pollution degree 2, CE
EMC: EN61326/A1 (1998), CE

- Power Requirements

AC Voltage	
PM6685:	90 to $265 \mathrm{~V}_{\mathrm{rms}}, 45$ to 440 Hz
PM6685R:	90 to $265 \mathrm{~V}_{\mathrm{rms}}, 47$ to 63 Hz
DC Voltage	
PM6685:	Option PM 9623: Internal battery or external DC source $12-24 \mathrm{~V}, \max 2 \mathrm{~A}$

PM6685: $\quad 90$ to $265 \mathrm{~V}_{\text {rms }}, 45$ to 440 Hz
PM6685R: $\quad 90$ to $265 \mathrm{~V}_{\mathrm{rms}}, 47$ to 63 Hz
DC Voltage
PM6685: Option PM 9623: Internal battery or external DC source $12-24 \mathrm{~V}$, max 2A

Power rating
PM6685: $\quad \max 30 \mathrm{~W}$
PM6685R: $\quad \max 100 \mathrm{~W}$ during warm-up ($<5 \mathrm{~min}$), then $\max 47 \mathrm{~W}$

Mechanical Data

Width
PM6685: $\quad 210 \mathrm{~mm}(8.25 \mathrm{in})$
PM6685R: $\quad 315 \mathrm{~mm}$ (12.4 in)
Height: $\quad 86 \mathrm{~mm}$ (3.4 in)
Depth: $\quad 395 \mathrm{~mm}$ (15.6 in)
Net Weight
PM6685: $\quad 3.2 \mathrm{~kg}(7 \mathrm{lb})$
PM6685R: $\quad 5.5 \mathrm{~kg}(12 \mathrm{lb})$
Shipping Weight
PM6685: $\quad 5.5 \mathrm{~kg}(12 \mathrm{lb})$
PM6685R: $\quad 8.8 \mathrm{~kg}(19 \mathrm{lb})$

Ordering Information

Basic Models
PM6685/011: $\quad 300 \mathrm{MHz}$ Frequency Counter including standard timebase ($5 \times 10^{-7} /$ month)
PM6685R/071: 300 MHz Frequency Counter/Calibrator including rubidium timebase ($5 \times 10^{-11} /$ month $)$
Included with Instrument:

One-year product warranty Power line cord Operators manual Programming manual (only when GPIB is included) Certificate of Calibration

Battery Unit and GPIB Options

PM 6685_/__1 No Battery Unit or GPIB
PM 6685/__3 Battery Unit (PM9623)

PM 6685/_ _ 3 Battery Unit (PM9623)

PM 6685_/__6 GPIB (PM9626/031) and

Example Ordering Configuration

To order the 300 MHz version of PM6685 with the PM9691 Oven Timebase and GPIB, select the Complete Model Number PM 6685/056.

To order the 3.0 GHz version of PM6685R including GPIB, select PM 6685R/676.

Analog Output
PM 6685/__8 Battery Unit plus GPIB

Input Frequency options

PM 6685_/0_ \quad Standard 300 MHz Frequency Counter
PM 6685_/4_ _ 1.3 GHz Input C (PM9621)
PM 6685_/6_ _ 3.0 GHz Input C (PM9624)

Timebase Options

PM 6685/_ 1_ Standard Timebase
PM 6685/_ 5_ Very High Stability Oven Timebase (PM9691)
PM 6685/_ 6_ Ultra High Stability Oven Timebase (PM9692)
PM 6685R/_7_ Rubidium Timebase

Options and Accessories

PM 9621	1.3 GHz Input C
PM 9622/00	Rack-Mount Kit for PM 6685R
PM 9622/02	Rack-Mount Kit for PM 6685
PM 9623*	Battery Unit
PM 9624	3.0 GHz Input C
PM 9626/031**	GPIB Interface
PM 9627	Carrying Case
PM 9627H	Heavy Duty Carrying Case
PM 9691	Very High Stability Oven Timebase
PM 9692	Ultra High Stability Oven Timebase
* PM9623 cannot be fitted in the PM6685R	
** PM9626/031 includes Analog Output	
When ordered with the basic counter, options are factory installed. Options ordered separately can be retrofitted by the customer.	

This page is intentionally left blank.

Chapter 13

Appendix

Appendix 1, Error Messages

If the counter detects an internal error or an invalid setting, it shows an error message on the display. This appendix lists all possible error messages.

If the counter has the PM9626/031 (GPIB) installed, GPIB error messages can be displayed in addition to the messages shown below. When a GPIB error is placed in the GPIB error queue, the display shows an error code number which is explained in Chapter 8, Error Messages, of the GPIB Programming Manual. This message is removed the next time the counter uses the display for a message or a measuring result.

Messages Due to False Settings:
 Err. FR it

Error Failure: The internal instrument setting is not valid.
Err. Fio 5Ru
Error No Save: An attempt to recall a memory that has never been saved

Err. AFLD

Error Overflow: A math operation in the counter caused an overflow error.

Err. PrESL.

Error Prescaler: An attempt to use the prescaler functions without a prescaler.
Err. rRnELE
Error Range: An attempt to enter a value above the maximum or below the minimum limit was made.

Err. LiFig
Underflow: A math operation in the counter caused an underflow error.

nilblis

No Bus: No GPIB interface is installed.

nB dRtR

No data: A reading of statistics data is made before data is captured.

ni Pre5:

No Prescaler: No Prescaler is installed.

No signal: Displayed when measurement is interrupted by a timeout. Disable Timeout (in Auxiliary Menu) or set a longer time.

Err. PratEc.

Error Protect: An attempt to make a save in a protected memory position.

BFIS

Overflow: The measurement has been abandoned due to an overflow condition.

Messages Due to Severe

Errors:

Err. 85 ic

Error ASIC: Displayed when there is a Measuring Logic Circuits failure.

E. r月 8888

Error RAM XXXXh: Displayed when there is a RAM test failure. XXXXh is the hexadecimal address where failure is detected first.

Err. rit

Error ROM: Displayed when there is a ROM test failure.

Err. ifroric.

Error Microprocessor: Displayed when an error is detected in the microprocessor's internal RAM, timers, or I/O port.

This page is intentionally left blank.

Chapter 14

Index

Index

!
± 1 cycle count error 6-3
50ohm/1Mohm key 4-5

A

A
AC coupling
AC coupling 5-5 5-5
Address
Reading the GPIBAddress 9-6
Address switch 4-10
Adjustments
timebase 11-2
Air flow 3-3
AM modulated signals 6-10
Analog
connector 4-10
Analog output connector. 4-11
specification 12-6
using 9-7
Aperture
SEE Measuring time
Arming
delay 7-4-9-5
description 7-8
examples 7-13
indication 4-8
input E 4-11
manually 7-9
selection 7-3
setup time 7-12
start 9-5
stop 9-5
sync. delay 7-9
Auto
once 5-5
time to determine levels 5-3
time-out 6-4
Auto trigger
levels 5-3
Aux
indication 4-8
menu description. 9-2-9-10
menu key. 4-6
AUX
annunciator 9-2
Averaging 6-5, 8-2
B
Battery
disposal 2-3
test 10-8
Blank digits 7-5
Burst 6-6 Display hold 7-3
frequency (CW) 9-5 Display Hold 7-9
Frequency (CW) 6-7, 6-9 Display time 7-2, 7-6
indication 4-9 Drift measurements 7-17
PRF 6-7, 9-6
specification 12-2
c
Calibration
intervals 11-2
Carrier wave frequency AM 6-10
Caution statements 2-2
Channel
SEE Input
Check 4-6
Cooling 3-3
Count error, ± 1 cycle 6-3
Counting
erroneously 5-7
events 6-16
reciprocal 6-3
Coupling 5-5
Crystal oscillators
calibration $11-2$
CW
AM 6-10
burst 9-5
D
Default settings 4-3
Delay
arming sync 7-9
Delayed timebase 7-4
Delta measurementsSEE Nulling
Digit blanking 7-5-7-11
Display hold key 4-7
DurationSEE Pulse width
Duty cycle
SEE Duty factor
Duty factor 6-15
Duty Factor
specification 12-2
uncertainty 12-7
Duty factor compensationwaveform4-5
E
EarthingSEE Grounding
End of a measurement 7-6
Enter
indicator 4-8
key 4-6
Erroneous counts 5-7
Error
Messages 13-2
Error ASIC 13-3
Error Failure 13-2
Error Microprocessor 13-3
Error NO SIGNAL 6-4
Error NO TRIG 6-4
Error Prescaler 13-2
Error Protect 13-2
Error RAM XXXXh 13-3
Error Range 13-2
Error ROM 13-3
Event counting
SEE Totalize
Examples Function
arming 7-13
Ext Ref
input 4-10
key 4-6
output test 10-6
specification 12-4
External Arming
input test 10-7
specification 12-4
External Gate
specification 12-4
FFan
replacement. 11-4
Filter
analog LP 5-5
characteristics 5-5
key 4-5
Firmware release
SEE Program version
Fixed
timeout 6-4
Fold-down support 3-3
Free-runningmeasurements7-6, 7-17
Freezing the display
SEE Display hold
Frequency. 6-3
burst 9-5
burst PRF 9-6
range test 10-5
ratio 6-12
specification 12-2
uncertainty. 12-7
Frequency versus time InputSEE Profiling
indication 4-8
period 6-13
ratio 6-12
selection 4-4
Functions hidden
SEE Aux menu
Fuse 3-2
G
Gate
indicator 7-3
Go-detector 6-9
GPIB
Address switch 4-10
connector 4-10
reading the address. 9-6
specification 12-5
Grounding 3-2
H
Handle 3-3
Hidden functions
SEE Aux menu
Hiding digits
SEE Digit blanking
Hold display 4-7
Hysteresis 5-7, 6-14
SEE ALSO Sensitivity
I
Identification 3-2
impedance
key 4-5
Impedance
setting 5-5
impedance 4-5
selection 6-3-6-5Input A4-4
keys 4-5
specification 12-3
test 10-5
Input C
specification 12-3-12-4
test 10-8
Input D
specification 12-4
Input E
specification 12-4
Interference 5-6-5-8
Interpolators 1-2
KKeyboardtest10-4
L
Local 4-4
Low pass filter 5-5
MMaintenancefan11-4
Manual
arming 7-9
sensitivity 5-4
Measurement
end 7-6
free-running 7-17
rate 7-6
start 7-6
timing 7-6
Measurement start controlSEE Start Arming
SEE Stop Arming
Measuring Functions
test 10-7
Measuring speed 6-4, 7-7
Measuring time 4-6, 7-6
influence by prescaling 6-5
setting 7-2
specification 12-4
Memory
specification 12-5
Menu 4-7
with more functions 9-2-9-10
Modulating frequency AM 6-11
N
No Bus 13-2
No data 13-2
No Prescaler 13-2
No Save 13-2
No signal 13-2
display message 6-4
No trig
display message 6-4
Noise 5-6-5-8
Noise Suppression Filter 5-5
Null
annunciator 8-3
Nulling 8-2
copy measurement result to 8-2
O
Offset
SEE Nulling
On
key
key 4-4
settings after 4-3
Oscillators
calibration 11-2
Output G
specification 12-4
P
Packing list 3-2
Period 6-13
specification 12-2
uncertainty 12-7
PM9621
specifications 12-3
PM9623
specifications 12-6
PM9624
specifications 12-4
test 10-8
PM9626/031
specifications 12-5
PM9691
specifications 12-8
test 10-5
PM9692
specifications 12-8
test 10-5
Power-On test 10-3
Prescaler
test 10-8
Prescaling
effect of 6-5
Preset
key 4-4
settings after 4-3
PRF
burst 9-6
specification 12-2
Processing
measuring results 8-2
Profiling 7-177-17
7-18transient
13-2 Program version Overflow Overflow 9-6Pulse period
S
Safety requirements I-VI
Sample-hold 6-4
Scaling factor analog output 9-7
Self-test 9-6, 10-3
SENS key 5-4
Sensitivity 6-14
SEE ALSO Hysteresis manual setting 5-4
speed of auto setting 5-3
test 10-5
Setup time
for arming 7-12
Signal detection 6-4
Single 4-6, 6-5-7-6, 8-2
Single-shot phenomena 7-9
Slope 4-5
Speed
arming 7-12
of measurement 6-4
of the auto function 5-3
SRQ 4-9
Standard Oscillator
test 10-5
Stand-by
indicator 4-4
key 4-4
Start
a new measurement 4-6
arming 7-3, 7-9, 9-5
of a measurement 7-6-7-7
totalizing 6-16
Stop
arming 7-3, 7-9, 9-5
of measurement 7-7
totalizing 6-16
Supply voltage setting 3-2
Support
fold-down 3-3
Suppression of noiseSEE Analog lowpass filter
Synchronization of a measurement 6-3
Syncronization delay arming 7-9
T
Test Equipment 10-2
Time
set the measuring 7-2
period 6-13
to set up arming 7-12
Time interval
SEE Pulse width
Timebase
calibration 11-2
Timeout
fixed 6-4
manual 6-4
Time-out
set 9-6
Time-Out
auto 6-4
Totalize 6-16
specification 12-3
Totalizing
reset 6-16
start 6-16
stop 6-16
Touch-holdSEE Sample-hold
Transient profiling 7-17
Trigger
auto level 5-3
error 5-4
hysteresis 5-7
slope selection 4-5
uncertainty 5-7
Trigger level 4-5
SEE ALSO sensitivity
Trigger Level
output test 10-7
U
Uncertainty
duty factor 12-7
frequency 12-7
period 12-7
PM9691 12-8
PM9692. 12-8
pulse width 12-7
random 12-7
ratio 12-7
rubidium reference 12-8
standard timebase. 12-8
systematic 12-7
Underflow 13-2
V
VCO
step response profiling 7-18
Voltage, supply 3-2
W
Warm-up time 10-2
Warning statements 2-2
Waveform 4-5
how to set 5-4
Width
of pulse 6-15

Chapter 15

Service Centers

SERVICE CENTERS

To locate an authorized service center, visit us on the World Wide Web:

http://www.fluke.com

or call Fluke using any of the phone numbers listed below:
+1-888-993-5853 in U.S.A. and Canada
+31-40-2675200 in Europe
+1-425-446-5500 from other countries

